Indian Institute of Information Technology Bhagalpur B.Tech in Mathematics and Computing (MAC)

Syllabus First Semester onwards

Course Code	Course name	L	Т	Р	С	Year	Semester	
MA101	Engineering Mathematics I	3	1	0	4	1 st	1 st	
Торіс	Conten	ts					No. of Lectures	
Module-I	Module-I Module-I Module-I And Solving System of linear equations: Gauss elimination method, Elementary Row operations, Elementary matrices, Invertible matrices, Gauss- Jordon method for finding the inverse of a matrix; the Determinant method for finding the inverse of a matrix, Vector space, Subspace, Linear span, Linear independence and dependence, Basis, Dimension, Extension of a basis of a subspace, Intersection, and the sum of two subspaces. The rank of a matrix, Row and column spaces, Solvability of a system of linear equations.							
Module-II	Iodule-II Inner Product Space, Orthogonal projection, Orthogonal complement, Orthogonal basis of a Vector Space, Gram-Schmidt orthogonalization process. Least Square Method; Eigenvalue, Eigen Vectors, Matrix Diagonalization, Similarity Transformation.							
Module-III	Aodule-III Co-ordinate of a Vector, Change of Basis; Linear transformation, Kernel, and Range of a linear map, Rank-Nullity Theorem, Matrix of a Linear Transformation; Point set Theory: Real Number system, Open and Closed Set, Intervals; Sequences of Real Numbers: Monotonicity, Convergence tests, Cauchy Criterion, Subsequences; Limits and Continuity of a real function, Boundedness of a continuous function on a closed interval, Uniform continuity.							
Module-IV	Taylor's theorem, Increasing and decreasing test for max and min, Point of Inflection; Sequence, Convergence of series, Geome convergence, Comparison test, Ratio test, Power series, Radius of convergence, Taylor	09						
Module-V	Introduction to Riemann Integration, Integration, Continuous functions and monotone integral, Fundamental theorems of Calculus; Improper integral of the first and the sec convergence. Introduction to Beta and Gamilto length, area, volume and surface area of revolution	08						
						Total	42	
Text	matics, Khanna P Mathematics, 10	ublishers, 44 th edition, th , Wiley India Pvt. Ltd.,						
Reference	 D. Poole, Linear Algebra: A Modern Intro S. R. Ghorpade and B. V. Limaye, A Cours 	oducti se in C	on, 4 ^t alculu	^h editi s and	on, Bi Real A	rooks Cole, 2014. Analysis, 1 st edition	n, Springer India, 2006.	

Course Code	Course name	L	Т	Р	С	Year	Semester			
PH101	Engineering Physics	3	1	0	4	1 st	1 st			
Торіс	Conten	No. of Lectures								
Module-I	Laws of thermodynamics- Statement, Discussion and Significance of Zeroth, First and Second law, Isothermal and Adiabatic change &Carnot cycle.									
Module-II	Concept of Entropy-Clausius inequality and Matter Waves, Wave and Group Velocities, H	08								
Module-III	Wave Function, its Interpretation and Norm Dynamical Variables as Operators, Expectatic Simple Applications like Particle in a Box.	10								

Module-IV	Semiconductor materials, insulators, intrinsic and extrinsic semiconductor, Carrier transport in a semiconductor: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers in semiconductors.	08
Module-V	Electrons and Holes in semiconductors: Donors and acceptors in the band model, electron effective mass, Density of states, Thermal equilibrium, Fermi-Dirac distribution function for electrons and holes, Fermi energy. Equilibrium distribution of electrons & holes.	08
	Total	42
Text	 Dattu R Joshi, Engineering Physics, Tata McGraw Hill Education, 1stedition, 2015. D K Bhattacharya, Poonam Tandon, Engineering Physics, Oxford University Press 	India; 2017.
Reference	 Arthur Beiser, Shobhit Mahajan, S Rai Choudhury, Concepts of Modern Phys Education, 7th edition, 2017. David J Griffiths, Introduction to Quantum Mechanics, Pearson India Education edition, 2018. 	ics, Tata McGraw Hill n Services Pvt. Ltd, 2 nd

Course Code	Course name	L	Т	Р	С	Year	Semester		
EC101	Electrical Science	3	0	0	3	1 st	1 st		
Course objective: independent sour analysis of single etc.	s and solution of citors and analysi determining the p	resistive circuits with s of magnetic circuits, power in these circuits,							
Торіс	Conten	ts					No. of Lectures		
Module-I	04								
Module-II	10								
Module-III	RLC circuit: source-free parallel circuit, overdamped parallel RLC circuit, critical damping, underdamped parallel RLC circuit, source-free series RLC circuit, complete response of the RLC circuit								
Module-IV	Sinusoidal steady-state analysis: forced resp forcing function, phasor, phasor relationship phasor diagrams, instantaneous power, aver factor, complex power; Polyphase circuits: p wire systems, three-phase Y-Y connection, c in three-phase systems	10							
Module-V	Magnetically coupled circuits: mutual Transformers, Principle of transformers and Motor and generator; Two-port networ parameters, impedance parameters, hybrid	induc rotat rks: c param	ing ma one-po neters,	, en achine ort n trans	ergy e, D. C etwor smissio	considerations, Cmachine: D. C. ks, admittance on parameters.	09		
						Total	42		
 W. H. Hayt, J. E. Kemmerly, S. M. Durbin, Engineering Circuit Analysis, Tata- Company Limited, 8th edition,2012. E. Hughes, J. Hiley, I. McKenzie-Smith, K. Brown, Electrical And Electronic Techno India, 10thedition, 2010. 							ЛсGraw-Hill Publishing ogy, Pearson Education		
Reference	ference 1. Bruce Carlson, Circuits: Engineering Concepts and Analysis of Linear Electric Circuits, Thomson Asia Ltd., 2 nd edition Reprint, 2006.								

Course Code	Course name	L	Т	Р	С	Year	Semester		
CS101	Computer Programming	3	0	0	3	1 st	1 st		
Course objective:	ters using C Progr	amming Language. We							
cover the basics o									
Торіс	Conten	No. of Lectures							
Module-I	 Introduction to Computing: Historical perspective, Early computers, the von Neumann architecture. Problems, Pseudo code, and Flowchart. Memory, Variables, Values, Instructions, Programs. Assembly language, High level language, Compiler, Assembler, Operating Systems. 								
Module-II	Introduction to C: The C language. Phases of developing a running computer program in C; Data Concepts in C: Constants, Variables, Expressions, Operators, and operator Module-II precedence in C. Managing input and output statements, Sequential control statements, Decision making statements (If Else constructs), Loop control statements (While construct, Do While construct, For construct).								
Module-III	JIE-III Data Types in C: Different basic data types and their sizes. One-dimensional Arrays: Declaration and initialization, Two-dimensional Arrays: Declaration and initialization, Multidimensional Arrays. String variables, Reading and writing strings, Arithmetic operations on characters, Putting strings together, Comparison of two strings.								
Module-IV	Modular Programming and Example Program Function definition. Function call: Passing a reference). Scope of variables. Recursive t recursion. Sorting problems: Selection sort, problems: Linear search and binary search. More Data Types in C: Pointers: Declaring Pointer arithmetic. Accessing arrays. throug strings.	10							
Module-V	Structures in C: Motivation, examples, or structures. Passing structures as function arg referential structures, Linked lists with examp and error streams. Opening, closing, and rea using functions such as fseek(), ftell(), and rea arguments.	07							
						Total	42		
Text	tion, 2015.								
Reference	Reference 1. Kernighan and Ritchie, The C Programming Language, PHI, 2 nd edition, 2017. 2. H. M. Deitel, P. J. Deitel, C: How to program, Pearson Education, 7 th edition, 201								

Course Code	Course name	L	Т	Р	С	Year	Semester				
HS101	Professional Communication	2	0	0	2	1 st	1 st				
Торіс	Topic Contents										
Module-I	Communication Fundamentals: Using Verbal	03									
Module-II	Module-II Interviewing Principles And Skills: Fundamental principles of interviewing, Success in an interview, Types of Interviews, Important Non-verbal aspects										
Module-III	Module-III GROUP DISCUSSIONS: Methodology of GD, Improving Group performance										
Module-IV	Professional Writing: Kinds of business letters Report Writing, Proposal layout and design, Minutes	05									
Module-V	Delivering Professional Presentations: Eler paragraphs, The power of reading, Punctuati	ments on an	of e d Capi	effecti talizat	ve Er ion	nglish, Effective	04				
						Total	20				
Text											

Course Code	Course name	L	Т	Р	С	Year	Semester				
ME102	Engineering Graphics	2	0	3	4	1 st	1 st				
Course objective:	Course objective:										
1. To understan											
2. To describe the											
3. To understan											
4. To represent											
Торіс	Conten	ts					No. of Lectures				
Module-I	 Introduction and importance of engineering drawing, Drawing techniques: manual drawing and computer-aided drawing, Drawing instruments and their uses; Conventions of ISO and BIS, Layout of drawing sheets, Border lines, Title block, Folding of drawing sheets, Lines; Scales: Requirements, Plane scale, Diagonal and Vernier scales; Geometrical construction and curves: Definitions of ellipse, Parabola and hyperbola, Various methods of drawing Ellipse, parabola and hyperbola and drawing tangents and normal at any point on the conic. 										
Module-II	Cycloids, Construction of cycloids, Epicycloids & hypocycloid; Involutes, Spirals and Helices and their construction; Orthographic projection: Introduction, Methods of projection, Orthographic projection, Projection planes and four quadrants, First and third angle projections; Projection of points: Introduction, A point is situated in the first, second, third and fourth quadrant; Projection of straight lines: Introduction, Line parallel to one or both of the planes, Line perpendicular to one of the planes, Line inclined to one and perpendicular to other, Line inclined to both of the planes, True lengths and its inclination. Traces of a line										
Module-III	Projection of planes: Introduction, Types calculations, Projection of planes parallel to of planes inclined to one reference planes ar oblique planes; Projection of lines and plane Introduction, Types of solids, Projections of s solids with axes inclined to one of the re Projections of solids with axes inclined to bot	06									
Module-IV	Projection of sectioned solids: Introduction, C True shape of a section, Sections of prisms, p Intersection of solids: Introduction, C Line/generator method and section plane m cylinders, cone and cylinder, pyramid an Development of surfaces: Introduction, Met lateral surfaces of right solids, Development spheres.	06									
Module-V	Isometric: Introduction, Isometric scale, Box Four center method, Isometric projection projection of different solids; Perspective pro Principles of perspective projection. Method objects.	meth n of ojectic ds of j	od, Co arcs, on: Inti perspe	oordin Const roduc ective	ate of ructio tion, 1 proje	r offset method, on of isometric Ferminology and action of various	04				
						Total	28				
Text	 N D Bhatt and V M Panchal, Engineering M B Shah and B C Rana, Engineering Dra 	Draw wing,	ing, Cł Pears	narato on Edi	or Pub ucatic	lishing House, 53' n, 2 nd edition, 20	rd edition, 2001 09.				
Reference1. T E French, C J Vierck and R J Foster, Graphic Science and Design, Tata McGraw Hill, 4th edition, 19842. W J Luzadder and J M Duff, Fundamentals of Engineering Drawing, PHI, 11th edition, 1995.3. K Venugopal, Engineering Drawing and Graphics, New Age International, 3td edition, 1998.											

Course Code	Course name	L	Т	Р	С	Year	Semester	
MA102	Engineering Mathematics II	3	1	0	2 nd			
Торіс	Conten	ts					No. of Lectures	
Module-I	Vector functions of one variable – contin Functions of several variables - continuity, pa gradient, differentiability, chain rule; tan Convexity, Maxima and minima, Saddle Pont,	09						
Module-II	Repeated and Multiple integrals with applicat of Inertia, change of variables, Vector Fields,	08						
Module-III	Green's, Gauss' and Stokes' theorems and the equations - exact differential equations, in existence and uniqueness theorem, applications	08						
Module-IV	Higher-order linear differential equations, homogeneous equations, method of variation Series solutions of linear differential equati polynomials. Bessel equation and Bessel func	09						
Module-V	Systems of first-order equations, two-dimens plane, critical points, stability.	ional	linear	auton	iomol	ıs system, phase	08	
						Total	42	
Text	 B S Grewal, J S Grewal, J K Dhanoa, Higher Engineering Mathematics, Khanna Publishers, 44th edition 2017. E. Kreyszig, H. Kreyszig, E. J. Norminton, Advanced Engineering Mathematics, 10th, Wiley India Pvt. Ltd. 2017 							
Reference	 D. Poole, Linear Algebra: A Modern Intro S. R. Ghorpade and B. V. Limaye, A Cours 	ductio e in C	on, 4 th alculu	editic s and	on, Bro Real A	ooks Cole, 2014. Analysis, 1 st edition	n, Springer India, 2006.	

Course Code	Course Name	L	Т	Р	С	Year	Semester	
CS201	Design and Analysis of Algorithms	3	1	0	4	2 nd	3 rd	
Course Objective: The objective of this course is to teach different algorithm techniques for effective problem so of different paradigms of problem solving will be used to illustrate clever and efficient ways to solve a given pro case emphasis will be placed on rigorously proving correctness of the algorithm. In addition, the analysis of the be used to show the efficiency of the algorithm over the naive techniques.								
Торіс	No. of Lectures							
Module I	Introduction and Recursion: Algorithm Phases, space and time complexity measures, lower an Design Techniques, Pseudo code, Models of Con Random Access Machine Model. Classification o Various Solution Methodology for recurrence re	7						
Module II	Module II Divide-and-conquer and Dynamic Programming: Binary Searching, Quick Sort, Merge Problems.							
Module III	Greedy Method: 0/1 knapsack Problem, Job So Spanning Trees, Optimal Sub-Structure.	8						
Module IV	IV Backtracking, Branch and Bound and Lower Bound Theory: N–Queens Problem, Hamiltonian Cycle Problem, and Graph Coloring Problem. Backtracking vs Branch and Bound, 15-Puzzle Problem. Computational Model - Comparison Tree, Oracles and Adversary Arguments, Lower Bound for Sorting: Selection algorithms							
Graph Algorithms and NP completeness: Connectivity, Topological Sort, Shortest Paths Network Flow; Disjoint Set Union Problem; String Matching, Disjoint Set Manipulation, Classification of Problems- Decision Problems, Optimisation Problems, Classification of Algorithms- Deterministic Algorithms, Non-deterministic Algorithms, Classes of Problems- P, NP, NP–Complete, and NP-Hard. Relationship among Classes of Problems, Reducibility, Cook's Theorem, Satisfiability, C-SAT Problem, Clique Decision Problem.							9	
						Total	42	

Text	 Introduction to Algorithms; Thomas H Cormen, Charles E Leiserson, Ronald L Rivest; 3rd, PHI Learning Private Limited; 2018. Design and Analysis of Computer Algorithms; A Aho, J E Hopcroft, J D Ullman; , Addison-Wesley; 1974.
Reference	 Algorithm Design; Jon Kleinberg, Eva Tardos; 14th, Pearson India Education Services Pvt.Ltd; 2017. Fundamentals of Computer Algorithms; Ellis Horowitz, Sartaj Sahni, S Rajasekaran; 2nd Edition, University Press; 2011. Algorith Design: Foundations, Analysis and internet Examples; M T Goodrich, R Tamassia ; , John Wiley & Sons; 2001.

Course Code	Course name	L	Т	Р	С	Year	Semester		
EC102	Digital Design	3	0	0	3	1 st	2 nd		
Course objective: T such as digital rep elements and finite	tal system abstractions 300lean algebra, state								
Торіс	Conte	nts					No. of Lectures		
Module-I	08								
Module-II	09								
Module-III	Module-III Logic Gates, Two-level realizations using gates; AND-OR, OR-AND, NAND-NAND and NOR-NOR structures; Multifunction gates, Multi-bit serial & parallel adder and subtractor, comparator, Multiplexers, Multiplexer-based realization of K-maps; Combinational circuit design using multiplexers and gates, DE-multiplexers, Encode Decoders								
Module-IV	Sequential Logic systems: Latches and Analysis of state machines using D flip-flop using flip-flops; Design of state mach transition/excitation table, excitation maps	Flip-flo os and hines- s and e	ops, 7 JK flip state equati	iming flops table ons, lo	; haza ; Sequ ; sta ogic re	ards and races; uence generator te assignment, ealization	10		
Module-V	Synchronous and Asynchronous counters; F RAM, ROM, PAL, PLA.	Regist	ers; M	emor	y: Rea	d-only memory,	06		
						Total	42		
Text	Education, 11 th eo ata McGraw Hill, 6	dition, 2009. ^{;th} edition, 2017.							
Reference	 Reference R. J. Tocci, N. S. Wisdmer and G. L. Moss, Digital Systems: Principle and Applications, Pearso Education, 10th edition, 2011. John F Wakerly, Digital Design: Principles And Practices, Pearson Education, 4th edition, 2008. 								

Course Code	Course name	L	Т	Р	С	Year	Semester
EC103	Semiconductor Devices & Circuits	3	0	0	3	1 st	2 nd
Course objectives semiconductor die	materials and ticularly, the cou	transport mechanism, rse objectives are to:					
1. Introduce stu	S.						
2. Provide stude							
Торіс	Conten	ts					No. of Lectures
Module-I	08						

Module-II	P-N Junction: Simplified device structure and physical operation of diode;depletion region, forward and reverse-bias, depletion and diffusion capacitances, switching characteristics; breakdown mechanisms; Zener diode, Tunnel diode; Diode Applications: Half Wave and Full Wave Rectifier, Clippers and Clampers, and Zener Regulators	09
Module-III	Simplified device structure and physical operation of BJT, I-V characteristics of BJT, carrier distribution; current gain, transit time, secondary effects; SPICE model. Metal-semiconductor junctions, Breakdown of the junction with the non-impact and impact ionization, β -I _c characteristics curve, variation of α with I _c ; Small signal equivalent circuit, BJT Amplifiers: Transistor Configuration analysis, Common base, Common emitter and Common collector	08
Module-IV	MOS structure, Energy band diagrams, Flat-band condition and flat-band voltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, MOS Q-V Characteristics.	08
Module-V	Introduction to Field effect transistors, Construction and characteristics of Junction Field effect transistors; N-channel and p-channel JFET characteristics; MOSFETS: Enhancement type and depletion type of MOSFET, Basic Operation and Characteristics; N-channel and P-channel MOSFET characteristics	09
	Total	42
Text	 R. F. Pierret, Semiconductor Device Fundamentals, Pearson Education, 1stedition, B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, Pearson Educat A. S. Sedra, K. C. Smith and A. N. Chandorkar, Microelectronics circuits, Oxford International Version 7th edition, 2017. 	2006. tion, 7 th edition, 2015. university Press India,
Reference	1. J. Singh, Semiconductor Devices - Basic Principles, John Wiley & Sons Inc., 1 st edit	ion, 2001.

Course Coo	le	Course name	L	Т	Р	С	Year	Semester
ME102		Engineering Mechanics	3	1	0	4	1 st	2 nd
Topic		Conten	ts					No. of Lectures
		Equivalent force systems; free-body diagra	ims; c	legree	s of	freed	om; equilibrium	10
Module-I		equations;						10
Module-II	Module-II Analysis of determinate trusses and frames; properties of surfaces friction.						8	
Module-II	I	Centroids and centres of gravity, Moment of Inertia; Virtual work principal						8
Module-I\	/	Equations of motion; work-energy and impulse-momentum principles; Generalized coordinates; Lagrangian mechanics.					9	
Module-V	1	Plane kinematics and kinetics of rigid bodies including work-energy and impulse- momentum principles; single degree of freedom rigid body systems.						8
							Total	43
	1.	H. Shames, "Engineering Mechanics: Statics a	and Dy	namio	cs", 4t	h Ed.,	PHI, 2002.	·
Text	2.	F. P. Beer and E. R. Johnston, "Vector Mecha	nics fo	r Engi	neers	, Vol I	-Statics", Vol II -[Dynamics, 3rd Ed., Tata
		McGraw Hill, 2000.						
	1.	S. Timoshenko, D.H. Young, J.V. Rao and S. Pa	at, "En	ginee	ring N	1echai	nics", Paperback -	-1 Jul 2017.
Reference	2.	1. J. L. Meriam and L. G. Kraige, "Engineering of the second se	ng Me	chanio	s, Vol	I -Sta	tics, Vol II – Dynar	nics", 5th Ed., John
		Wiley, 2002.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA201	Engineering Mathematics III	3	1	0	4	2 nd	3 rd
Торіс	Conten	ts					No. of Lectures
Module-I	Complex numbers and elementary properties and differentiation. Cauchy-Riemann equation	s. Con ns. Ar	nplex i nalytic	functi and h	ons - l narmo	imits, continuity nic functions.	08
Module-II	Elementary functions. Anti-derivatives and path (contour) integrals. Cauchy-Goursat Theorem. Cauchy's integral formula, Morera's Theorem. Liouville's Theorem, Fundamental Theorem of Algebra and Maximum Modulus Principle. Taylor series. Power series. Singularities and Laurent series.						09
Module-III	Cauchy's Residue Theorem and application Differential Equations: First order PDEs; solu PDEs; classification of second-order PDEs.	ons. I tions (Mobiu of line	is tra ar and	nsfori d non	mations; Partial linear first order	08
Module-IV	Method of characteristics Iin PDE; boundary and initial value problems (Dirichlet and Neumann type) involving wave equation, heat conduction equation, Laplace's equations and solutions by method of separation of variables; initial boundary value problems.					08	
Module-V	Solution of PDE by Laplace transform; For transforms, sine and cosine transforms; solut	urier ion of	series PDE	, Fou by Foι	rier ir urier t	ntegrals; Fourier ransform.	10
						Total	43
Text	 B S Grewal, J S Grewal, J K Dhanoa, Higher Engineering Mathematics, Khanna Publisher 2017. E. Kreyszig, H. Kreyszig, E. J. Norminton, Advanced Engineering Mathematics, 10th, Wiley 2017 						ublishers, 44 th edition, th , Wiley India Pvt. Ltd.,
Reference	 Ian N Sneddon, Elements of Partial Difference 2. John H Mathews, Russell W Howell, Co Bartlett India Pvt.Ltd, 6th edition, 2011. James Ward Brown, Ruel V Churchill, Co 8th edition, 2016. 	rentia mple> mple>	i Equa (Anai (Varia	tions, nlysis ables a	Dove for M and Aj	r Publications; 20 lathematics and E oplications, Tata N	us. Engineering, Jones and AcGraw Hill Education,

Course Code	Course name	L	Т	Р	С	Year	Semester
CS201	Object Oriented Programming	3	0	0	3	2 nd	3 rd
Course objective: The course is designed to provide students with complete knowledge of Object C through C++ and to enhance the programming skills of the students by giving practical assignments to course also aims to provide students with requisite knowledge about Object Oriented Programming the make their own Applications/Projects using C++							riented. Programming b be done in labs. The rough C++ so that they
Торіс	Conte	nts					No. of Lectures
Module-I	Module-I Principles of OOPs, Basics of C++, Functions in c++ : Basic Concepts of OOP, Benefits of OOP, OOP Languages, Applications of OOP. C++ program basics, data types, operators in c++, scope resolution, type cast operators, operator overloading, operator precedence. Main function, function prototyping, call by reference, inline functions, default arguments, constant arguments, function overloading, friend and virtual functions, maths library functions.						08
Module-II	e-II Classes, objects, constructors and destructors – C structures revisited, specifying a class, defining a member function, private member functions, memory allocation for objects, static data members and member functions, array of objects, objects as function arguments, friendly functions, returning objects, pointers to members, constructors, Parametrized constructors, Multiple constructors, Copy constructor, Destructors.					08	
Module-III	Operator overloading, inheritance, virt Overloading unary operators, overloading operators, type conversions. Derived of inheritance, multiple inheritance, hierarc virtual base classes, abstract classes, ne objects, this pointer, pointer to derived functions.	ual f binar lasses chical esting classe	unctio y oper s, sing inher of cla es, virt	ns a ators, gle in itance asses. cual fu	nd p rules herita , hyb Poin ¹ unctio	olymorphism – for overloading ance, multilevel rid inheritance, ters, pointer to ns, pure virtual	09

Module-IV	Console I/O operations, working with files and templates – C++ streams and stream classes, unformatted I/O operations, formatted console I/O operations, managing output with manipulators. Classes for file stream operations, opening/closing of file, file pointers and their manipulation, error handling during file operation, command line arguments. Class templates, class template with multiple parameters, function templates, overloading template functions, member function templates, non-type template arguments.	09
Module-V	Exception handling and Standard template library – Basics of exception handling, exception handling mechanism, throwing mechanism, catching mechanism, rethrowing exception, specifying exception. Components of STL, Containers, Algorithms, Iterators, Application of Container classes, Functions objects.	08
	Total	42
Text	 E. Balagurusamy, Object Oriented Programming with C++,Tata McGraw Hill. Herbert Schildt, C++: The Complete Reference, Osborne, 1991. 	
Reference	1. Bjarne Stroustrup, 1. The C++ programming language, Pearson Education, 201	7.

Course Code	Course name	L	Т	Р	С	Year	Semester
CS202	Discrete Mathematics	3	1	0	4	2 nd	3rd
A course designed to prepare computer science and engineering students for a background in abstract thinking for the mathematics most directly related to computer science. Topics include: logic, relati theory, countability and counting arguments, proof techniques, mathematical induction, graph						ion, notation and critical ons, functions, basic set theory, Combinatorics,	
recursion, recurrence relations, elementary number theory and graph theory.							
Горіс	Conte	nts			-+ D		No. of Lectures
Module-I	and Partitions, Basic Operations on a Set and Partition on a set. Relation: equiv- composition, injective-bijective functions Groups as Algebraic Structures.	alence . Pose	set, Po e relat et, Latt	ion, (ice, B	oolea	roduct of Sets, res. Functions: n Algebra, and	9
Module-II	Propositions and Logical Operators, Statements. Normal Forms CNF & DNF. Pr Quantifiers. Proofs and Logical Infere Induction Based Proofs.	Tauto redica ence,	logies, te Log Prene	logi ic, Qu ex No	cal e antifie ormal	quivalence of ers and Nested Form (PNF).	8
Module-III	Counting: Inclusion and Exclusion Principles, Product and Sum Rules, Permutation and combination, Blnomial and Multinominal Coefficient. Derrangements. Stirling numbers of the 1st and 2nd kind. Bell's Number, Catalan Number. Recursion: Solving First and Second order Non Homogeneous Linear Recurrence Relations. Generating Functions and its application in colving Recurrence Relations.					9	
Module-IV	e-IV Number Theorem. Graphs, Subgraphs, Graph Representation. Isomorphism of graphs. Walks, paths, circuits. Eulerian and Hamiltonian Paths. Connectedness and Components, Cut Set. Trees, Spanning tree in a graph.						9
Module-V	-V Planar Graph: Matching and Bipartite Graph Coloring of a graph						9
						Total	44
Text	Text 1. Discrete Mathematics and its Applications; Kenneth H Rosen, Kamala Krithivasan; 7th, McGrav Education; 2011.						ivasan; 7th, McGraw Hill
Reference 1. Discrete Mathematics for Computer Scientists and Mathematicians; Joe L Mott, Abraham Kander Theodore P Baker; 2nd, Pearson India Education Services Pvt.Ltd; 2018. 2. Discrete Mathematical Structures with Applications to Computer Science; J P Tremblay, R Manoha McGraw Hill Education: 2016.					. Mott, Abraham Kandel, P Tremblay, R Manohar;		

Course Code	Course name	L	Т	Р	С	Year	Semester
CS201	Design and Analysis of Algorithms	3	1	0	4	2 nd	3 rd
Course Objective:	The objective of this course is to teach differe	ent alg	gorithr	n tecł	nique	es for effective pr	oblem solving. The use
of different paradi	gms of problem solving will be used to illustr	ate cl	ever a	nd ef	ficient	: ways to solve a g	given problem. In each
case emphasis will	be placed on rigorously proving correctness	of the	e algoi	rithm.	In ad	dition, the analys	is of the algorithm will
be used to show the efficiency of the algorithm over the naive techniques.							
Торіс	Contents						No. of Lectures
Introduction and Recursion: Algorithm Phases, Asymptotic Notations and Analysis- space and time complexity measures, lower and upper bounds; Various Algorithm Design Techniques, Pseudo code, Models of Computation- Turing Machine Model and Random Access Machine Model. Classification of Recursion, Application of Recursion, Various Solution Methodology for recurrence relations.					ons and Analysis- arious Algorithm Machine Model a, Application of 5.	7	
Module-II	Divide-and-conquer and Dynamic Programming: Binary Searching, Quick Sort, Merge Sort, Matrix Chain Multiplication Problem, Travelling Salesman Problem, Shortest Path Problems.						10
Module-III	Greedy Method: 0/1 knapsack Problem, Job Sequencing with Deadlines, Minimum Spanning Trees, Optimal Sub-Structure.						8
Module-IV	Backtracking, Branch and Bound and Lower Bound Theory: N– Queens Problem, Hamiltonian Cycle Problem, and Graph Coloring Problem. Backtracking vs Branch and Bound, 15-Puzzle Problem. Computational Model - Comparison Tree, Oracles and Adversary Arguments, Lower Bound for Sorting: Selection algorithms					8	
Module-V	Graph Algorithms and NP completeness: Connectivity, Topological Sort, Shortest Paths Network Flow; Disjoint Set Union Problem; String Matching, Disjoint Set Manipulation, Classification of Problems- Decision Problems, Optimisation Problems, Classification of Algorithms- Deterministic Algorithms, Non- 9 deterministic Algorithms, Classes of Problems- P, NP, NP–Complete, and NP-Hard. Relationship among Classes of Problems, Reducibility, Cook's Theorem, Satisfiability, C-SAT Problem, Clique Decision Problem						9
						Total	42
Text	 Introduction to Algorithms; Thomas H Cormen, Charles E Leiserson, Ronald L Rivest; 3rd, PHI L Private Limited; 2018. Design and Analysis of Computer Algorithms: A Aho, J E Hopcroft, J D Ullman: Addison-Wesley 						ivest; 3rd, PHI Learning Addison-Wesley; 1974.
Reference	 Algorithm Design; Jon Kleinberg, Eva T Fundamentals of Computer Algorithm University Press; 2011. Algorithm Design: Foundations, Analy Wiley & Sons; 2001. 	Tardos ms; E vsis an	; 14th llis Ho d inte	, Pear prowit rnet l	z, Sar z, Sar Examp	ndia Education Se taj Sahni, S Raja bles; M T Goodric	rvices Pvt.Ltd; 2017. asekaran; 2nd Edition, ch, R Tamassia ; , John

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS207	Computer Organization and Architecture	3	1	0	4	2 nd	3 rd
Course Objective: This course will introduce students to the fundamental concepts underlying modern computer organization and architecture. Main objective of the course is to familiarize students about hardware design including logic design, basic structure and behavior of the various functional modules of the computer and how they interact to provide the processing needs of the user. It will cover machine level representation of data, instruction sets, computer arithmetic, CPU							
structure and function	ns, memory system organization and system inp	ut/ou	itput	devic	es.	, , ,	·
Торіс							Hour
Module I Basic structure of computers: Functional units, Basic operational concepts, Technologies for building processors and memory, Performance measures.					cepts, asures.	5	
Instruction and Arithmetic for computers: Language of the computer: MIPS instruction set, addressing modes, and assembly language programming. Signed Module II and unsigned numbers, addition, subtraction, multiplication- Booth's Algorithm, integer division- Restoring division and non-restoring division, floating point representation.					12		
Module III	Processor Design: Single cycle, multi-cycle, pipe	elined	l proc	essor	desig	n.	8

Module IV	8				
Module V	8				
		Total	41		
Text	 D. A. Patterson and J. L. Hennessy, Computer Organization and De 2017. W. Stallings, Computer Organization and Architecture: Designing f Education India. 2010. 	sign, 5th Ed., Mo	organ Kaufmann, 8th Ed., Pearson		
Reference	 1. V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization, 5th Ed., McGraw Hill, 2017. 2. David Money Harris and Sarah L. Harris, Digital Design and Computer Architecture, second edition, Morgan Kaufmann. 2017. 				

Course Code	Course name	L	Т	Р	С	Year	Semester
HS201	Management Concepts and Technology	2	0	0	2	2 nd	3 rd
Topic	Conten	ts					No. of Lectures
Module-I	Principles of Management: Concept of Management, Functions of Management, Planning and its Nature &Organising, Designing organizational Structure, Authority relationships,						04
Module-II	Delegation of Authority. Staffing: Motivation and its Theory, Leadership Communication. Directing, Controlling& its techniques. Coordinating; Principles of Economic: Microeconomics: Concept of consumption, production, exchange, distribution.						05
Module-III	Demand analysis: Concept, kind of demand, change in demand, law of demand; Utility analysis: Marginal, total, consumer surplus, consumer equilibrium; Production analysis: Law of supply, different factors of production, law of returns, economies of scale.						06
Module-IV	Cost analysis: Cost concept, importance of co analysis: Different kinds of markets, pricing perfect, imperfect, monopoly.	st beł g & e	naviou quilibr	ir, cos [.] ium i	t class n diff	ification; Pricing erent markets -	05
Module-V	Income distribution: Briefing them about rent, wages, interest and profit. The international economics: Changing scenario, globalization, structural adjustment programme, stabilization policy, the multinational corporation. IBRD, IMF, GATT, WTO_ITO_IDA_IEC_MIGA						05
						Total	25
1.Business Organisation& Management - C.R Basu.2.Essentials of Management - Harold Koontz, HeingWerhrich.3.An introduction to Positive Economics; Lipsey.4.Modern Microeconomics; A. Koutsoyiannis.5.Managerial Economics - Analysis, Problems and Cases; P.L. Mehta.6.Business Economics; ManabAdhikary.							

Course Code	Course name	L	Т	Р	С	Year	Semester
MA204	Optimization	3	1	0	4	2 nd	4 th
Торіс	Cont	tents					No. of Lectures
Module-I	Objective function; Constraints and Co problems as mathematical progra optimization problems, Optimization techniques.Stationary points; Function Optimum, Optimization of function o Gradient vectors; Examples, Optimiza subject to equality constraints; Lagrang multiple variables subject to equality o Eigen values, Kuhn-Tucker Conditions;	nstrai mmin techi ns of f one tion o ian fui onstra Examp	nt sur g pr niques single varia of fun nction nints; l oles	face; I oblem and ble ar ction Optir Hessia	Formu is, C ssical two v nd mu of m nization n mat	Ilation of design lassification of and advanced variables; Global Iltiple variables; ultiple variables on of function of trix formulation;	10

Module-II	Convex Sets, Polyhedron, Convex and Affine functions, Standard form of linear programming(LP) problem; Canonical form of LP problem; Basic Feasible Solution, Graphical method, Simplex algorithm and construction of simplex tableau; Simplex criterion; Minimization versus maximization problems, Revised simplex method; Duality in LP; Primal-dual relations; Dual Simplex, method; Sensitivity or post optimality analysis, Other algorithms for solving LP problems –Karmarkar's projective scaling method	10
Module-III	Transportation and assignment problems, zero sum games	7
Module-IV	Unimodal function, Unrestricted search, Exhaustive search, Dichotomous search, Interval halving method, Fibonacci method, Golden section method, Direct root methods.	6
Module-V	Sequential optimization; Representation of multistage decision process; Types of multistage decision problems; Concept of sub optimization and the principle of optimality, Recursive equations –Forward and backward recursions; Computational procedure in dynamic programming(DP), Discrete versus continuous dynamic programming; Multiple state variables; curse of dimensionality in DP	8
		41
Text	 U. Faigle, W. Kern, and G. Still, Algorithmic Principles of Mathematical Progr D.P. Bertsekas, Nonlinear Programming, 2nd Ed., Athena Scientific, 1999. 	ramming, Kluwe, 2002.
Reference	 N. S. Kambo, Mathematical Programming Techniques, East West Press, 199 M. S. Bazarra, J.J. Jarvis, and H.D. Sherali, Linear Programming and Networ (3nd ed. Wiley India 2008). K. Deb, "Optimization for Engineering Design-Algorithms and Examples", Pro Ltd., New Delhi, 1995 	7 k Flows, 4th Ed., 2010. entice-Hall of India Pvt.

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS206	Operating Systems	3	0	0	3	2 nd	4 th
Objective: The objective of this course is to teach the fundamentals of computer Operating Systems. This course students to understand the service provided by the operating system, what a process is and how processes are system.							
and scheduled and o	lifferent approaches to memory management. It also	expl	ains	the s	truct	ure and organizati	on of the file
system and different	security issues in modern operating systems.						
Торіс							Hour
Module I	Introduction: Introduction to operating systems, ope	ratir	ig sys	stem	opera	ations.	5
Module II	Process management: Process concept, multithreaded programming, Process scheduling, Inter process communication and synchronization, Deadlocks; deadlock 10 detection, prevention and avoidance						10
Module III	Memory Management: Memory management strate memory management; demand paging, TLB, frame a algorithms.	gies; lloca	pag tion	ing, s and	segme page	entation, virtual replacement	8
Module IV	Storage Management: File system, file operation and free space management, directory management, mo	l the unti	ir im ng.	plem	entat	ion, allocation,	6
Module V	I/O Management: disk drives and disk scheduling, ba	sics (of se	curit	y.		5
	Total 34						34
Text	1. Silberschatz, A., Galvin, P. B., and Gagne G., Operating System Concepts. 8/e. Wiley, 2008.						
	2. Tanenbaum, A. S. Modern Operating System	n. 3/	e. Pe	arso	n, 200)7.	
Reference	1. Stalling, W. Operating Systems: Internals an	d De	sign	Princ	ciples.	6/e. Pearson, 200	08.
Reference 2. Dhamdhere, D. M. Operating SystemsA Concept Based Approach, McGrawHill, 20						008.	

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS205	Formal Language and Automata	3	1	0	4	2 nd	4 th
Course Objective: T	Course Objective: The objective of this course is to provide students with an understanding of basic concepts in the theory of						
computation. The c	course explains and explores various concept	s in a	utom	ata tł	neory	and formal lang	uages such as formal
proofs, (non-)deter	ministic automata, regular expressions, regu	lar laı	nguag	ges, c	ontex	t-free grammar	s, context-free languages,
Turing machines. It	Turing machines. It also aims to explain the power and the limitations of regular languages and context-free languages.						
Торіс							Hour

Module I	Basics and Finite Automata: Alphabets, Language, Grammars, NFA, DFA, NFA- DFA, Equivalence of NFA and DFA, Minimization of FA, Myhill-Nerode Theorem.	8
Module II	Finite State Models, Regular Grammar and Language: Basic Definition, Mathematical Representation, Moore versus Mealy M/C, Capability and Limitations of FSM, State Equivalence & Minimization, Machine Equivalence. Regular Expression; Regular Grammar, Regular Language, Pumping Lemma for Regular Languages, Properties of Regular Languages.	10
Module III	Context Free Grammars and Language, Push Down Automata: CFG, CFL, Derivations, Parse Tree, Parsing and Ambiguity, CFG and Programming Languages, Transformation of CFGS, Normal Forms, Membership Algorithms, Pumping Lemma for CFLs, Properties of CFLs. Non-Deterministic PDA, Instantaneous Descriptions, Language Recognized by PDA, PDA and CFL, Deterministic PDA, and Deterministic CFL.	10
Module IV	Turing Machines: Standard Turing Machine, Design of Turing Machine, Universal Turing Machine, Halting Problem, Non-Deterministic Turing Machine.	7
Module V	Hierarchy of Formal Language and Automata: Operations on Formal Language and Their Properties, Chomsky Hierarchy, Context Sensitive Grammars, Linear Bounded Automata, Recursive and Recursively Enumerated Language.	7
	Total	42
Text	 Introduction to Automata Theory, Languages and Computation; John E Hoper Jeffrey D Ullman; 3rd, Pearson India Education Services Pvt.Ltd; 2018. An Introduction to Formal Languages and Automata; Peter Linz, ; 6th, Jones a 2017. 	oft, Rajeev Motwani, nd Bartlett India Pvt.Ltd;
Reference	 Elements of the Theory of Computation; H R Lewis, C H papadimitrou; 2nd Ec 2010. Introduction to the Theory of Computation; Michael Sipser, ; 3rd, Cengage; 2 	lition, Prentice Hall India; 017.

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS204	Database Management System	3	0	0	3	2 nd	4 th
Course Objective: This course provides fundamental knowledge of, and practical experience with, database c course, you will create relational databases, write SQL statements to extract information to satisfy business r requests, create entity relationship diagrams (ERDs) to design databases, and analyse table designs for excess The course also provides an introductory level understanding of advanced topics such as data mining, inform etc.						concepts. In this reporting ssive redundancy. nation retrieval	
Торіс							Hour
Module I	Module I Introduction to database management, data abstraction and system structure. Entity relational model, entity set, relationship sets, mapping cardinalities, keys, E-R diagrams.						6
Module II	Relational model, database schema, relational alge databases.	ebra,	outer	join a	and m	anipulation of	5
Module III Tuple relational calculus: Example queries, formal definitions and safety of expressions; SQL: Query processing and optimization, set operations, aggregate functions, data definition language and views, comparison of queries in relational algebra, SQL, tuple relation calculus and domain relation calculus.							6
Relational database design, various normal forms, functional dependencies, canonicalModule IVcover, lossless join, dependency preservation, multi value dependency and higher normal forms, transaction management, ACID property.						10	
Module V Serializability and testing for serializability, concurrency control schemes, lock-based protocols, two-phase locking protocols, graph-based protocols, time stamp-based							10

	protocols, deadlocks. Recovery systems, log-based recovery, deferred and immediate database modification, object oriented database design.						
		Total	37				
Text	 Database System Concepts; Abraham Silberschatz, Henry F Korth; 6th, McGraw Hill Education (India) Pvt. Limited; 2013. An Introduction to Database Systems; C J Date, A Kannan, S Swamynathan; 8th, Dorling Kindersley (India) Pvt. Ltd.; 2013. 						
Reference	 Abraham, H. and Sudershan, S., "Database System Concepts", 4th Ed., McGraw-Hill, 2002 Elmasi, R. and Navathe, S.B., "Fundamentals of Database Systems", 4thEd., Pearson Education., 2005 						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA202	Probability and Statistics	3	1	0	4	2 nd	4 th
Торіс	Conten	No. of Lectures					
Module-I	Basic Probability: Sample Space and Events. Random Variables: Discrete and Continuou Moment Generating Functions.	. Cono us Pro	ditiona babilit	il Prol zy Dis	babilit tribut	y, Expectations; ions. Moments,	08
Module-II	Distributions:Binomial-Poisson-Geometric-Uniform-Normal-exponential-Gamma; Two Dimensional Random Variables: Joint Distribution, Marguinal and Conditional 10 Distribution, Covariance, Correlation Coefficient, Linear Regression.						
Module-III	Transformation of random variables, Sampling Distributions: The Central Limit Theorem, distributions of the sample mean and the sample variance for a normal population, Chi-square, t, F and Z distributions and 2x2 contingency table. Descriptive Statistics: Graphical representation, measures of locations and variability						09
Module-IV	Estimation: criterion of good estimation, the of maximum likelihood estimation, confide sample and two sample problems of norma proportions.	e metl ence al pop	nod of interva ulatior	morr als fo ns, co	ients a r para nfider	and the method ameters in one nce intervals for	07
Module-V	Testing of hypotheses: Null and alternative hypotheses, the critical and acceptance regions, two types of error, power of the test, the most powerful test and Neyman- Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions, Chi-square goodness of fit test and its applications.09						
						Total	43
Text	 P G Hoel, S C Port, C J Stone, Introduction to Probability Theory, Universal Book Stall; 2000. J. Medhi, Stochastic Processes, New Age International, 4th edition, 2017. 						itall; 2000.
Reference	1. R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, Wiley India, 2 nd edition, 2012.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA301	Mathematical Finance	3	1	0	4	3 rd	5 th
Topic	Content	S					No. of Lectures
Module-I	Introduction to Financial Markets: Bonds, Options. Interest, Present & Future Values, A Price Yield Curve and Term Structure of Inter- Risk and Two Asset Portfolio Minimum Varia Asset Portfolio, Minimum Variance Portfo Variance Line. Market Portfolio, Market Line,	10					
Module-II	No-Arbitrage Principle and Pricing of Forward Call-Parity, Bounds on Options. Derivative Pri Derivative Pricing in Multiperiod Binomial Mod and Path Dependent Options.	07					

Module-III	Discrete Probability Spaces Filtrations and Conditional Expectations, Properties of Conditional Expectations. Examples of Conditional Expectations, Martingales-Neutral Pricing of European Derivatives in Binomial Model, Actual and Risk-Neutral Probabilities, Markov Process, American Options.	08
Module-IV	Stochastic Calculus: General Probability Spaces, Expectations, Change of Measure, Filtrations, Independence, Conditional Expectations, Brownian Motion and its Properties, Ito's Integral and its Properties, Ito's Formula, Ito's Processes, Multivariable Stochastic Calculus, Stochastic Differential Equations	09
Module-V	Black-Scholes-Merton (BSM) Model, BSM Equation, BSM Formula, Greeks, Put-Call Parity, Change of Measure, Girsanov Theorem, Risk-Neutral Pricing of Derivatives, BSM Formula. MRT and Hedging, Multidimensional Girsanov and MRT Multidimensional BSM Model, Fundamental Theorems of Asset Pricing Model with Dividend-Paying Stocks.	09
	Total	43
Text	Chandra, Dharmaraja, Mehra, Khemchandani; Financial Mathematics: An Introducti House. Fred Espen Benth, Option Theory with Stochastic Analysis: An introduction to mathema	on, Narosa Publishing tical finance, Springer.
Reference	S. E. Shreve , Stochastic Calculus for Finance, Vol. I & Vol. II, Springer. Thomas Mikosh, Elementry Stochastic Calculus with Finance in view, World Scientific.	

Course Code	Course name	Semester					
MA302	Abstract Algebra	3	1	0	4	3 rd	5th
Торіс	Conten	No. of Lectures					
Module-I	Groups - elementary properties including identity and inverses; unique solvability of lin- tests; orders of elements; cyclic groups permutation groups, including the alternating and transpositions; dihedral groups and appl	cance ear eq ; mo g and s ication	Ilatior uatior dular symm	n law: ns; sub syste etric g ymme	s, uni ogroup ms; a groups etry.	queness of the os and subgroup abelian groups; s, cycle notation,	09
Module-II	Direct products, Finitely generated abelian group, Group actions, Sylow theorems	08					
Module-III	Normal Subgroups and quotient groups, Iso Conjugacy and G-sets, Normal series, Solvabl	omorp le grou	ohism Ips, Ni	theor Ipote	^r ems, nt gro	Auto orphisms, ups.	08
Module-IV	Rings, ideals and quotient rings, Homomor Maximal and prime ideals, Nilpotent and Nil factorization domain, Principle ideal domain over UFD.Definition and examples, Sub modu and quotient modules, completely reducible	phism ideals n, Euc ules ar modu	, Sum s, Zorr lidear nd dire les, fr	and a's ler dom ect sur	direct nma. Iain, P ms, R- odules	t sum of ideals, Unit IV : Unique Polynomial rings homomorphism	10
Module-V	Field extensions, Finite fields.	08					
	Total						
Text	 J. Fraleigh, A First Course in Abstract Algebra, Pearson, 2003. D. Dummit and R. Foote, Abstract Algebra, Wiley, 2004. 						
Reference	 I. N. Herstein, Topics in Algebra, Wiley, 2008. P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, 1995. 						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA303	Scientific Computing	4 th					
Course objective	needed to solve	a differential equation					
in engineering di	isciplines						
Topic	Conten	ts					No. of Lectures
Errors; Iterative methods for nonlinear equations; Polynomial interpolation, spline interpolations; Numerical integration based on interpolation, quadrature methods, Gaussian quadrature						rpolation, spline rature methods,	08
Initial value problems for ordinary differential equations - Euler method, Runge-Module-IIKutta methods, multi-step methods, predictor-corrector method, stability and convergence analysis;08					08		
Module-III	Finite difference schemes for partial difference schemes	ential	equat	ions	- Expl	icit and implicit	09
Module-IV	Consistency, stability and convergence; Stal Neumann method), Lax equivalence theorer	oility a n	analys	is (ma	atrix n	nethod and von	08
Module-V	Finite difference schemes for initial and bour Euler and Crank-Nicolson schemes, ADI me scheme).	ndary thods	value , Lax '	prob Wend	lems (roff n	FTCS, Backward nethod, upwind	09
						Total	42
Text	1.D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed., AMS, 2002.Text2.2.G. D. Smith, Numerical Solutions of Partial Differential Equations, 3rd Ed., Calrendorn Press, 1985.					nputing, 3rd Ed., AMS, ndorn Press, 1985.	
References1.K. E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989.2.S. D. Conte and C. de Boor, Elementary Numerical Analysis - An Algorithmic Approach, McGraw- Hill, 1981.					Approach, McGraw-		

Course Code	Course name	L	Т	Ρ	С	Year	Semester
MA304	Real Analysis	3	1	0	4	2 nd	3 rd
Торіс	Contents						No. of Lectures
Module-I	06						
Module-IIDefinition and existence of Riemann Stieltjes integral, properties of the integral, Integration and differentiation. The fundamental theorem of calculus, integral of vector valued function, rectifiable curves.						07	
Module-III	le-III Sequences and uniform convergence, Cauchy criterion for uniform convergence, Weierstrass M-test, Abel' s and Dirichlet's tests for uniform convergence, uniform convergence and continuity, uniform convergence and integration, uniform and differentiation, Weierstrass approximation theorem.Rearrangement of terms of a series, Riemann's theorem. Power series, Uniqueness theorem for power series,						08
Module-IV	Module-IVFunctions of several variables, linear transformation, derivatives in an open subset of R^n, chain Rule, partial derivatives, interchange of order of differentiation, Derivatives of higher order, Taylor's theorem. Inverse function theorem. Implicit function theorem, Jacobians, Extremum problems with constraints, Lagrange's multiplier method, Examples on Maxima and Minima, Differentiation of integrals.						10
Module-V	Module-V Lebesgue measure and integral - sigma-algebra of sets, measure space, Lebesgue measure, measurable functions, Lebesgue integral, Fatou's lemma, dominated convergence theorem, monotone convergence theorem, Lp spaces.						10
						Total	41

Taut	1.	Apostol T .M., Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
	2.	Robert ,G.Bartle,Donald R.Sherbert:Introduction to Real Analysis Wiley India Edition 2010
Text	3.	S.C.Malik and Savita Arora: Mathematical Analysis, Wiley Fastern Ltd., New Delhi.
	4.	Jain P .K. and Gupta V. P., Lebesque Measure and Integration, New Age international
	1.	J. E. Marsden and M. J. Hoffman, Elementary Classical Analysis, 2nd Ed., W. H. Freeman, 1993
Reference	2.	Walter Rudin; Principles of Mathematical Analysis, Mc Graw HillBooks Company, Third Edition 1976,
		international student edition

Course Code	Course name	L	Т	Р	С	Year	Semester		
CS303	Artificial Intelligence30243 rd 5 th								
Course Objective: The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches.									
Develop a basic under	standing of the building blocks of AI as pre	esente	d in te	erms d	of inte	lligent agen	ts: Search, Knowledge		
representation, inference, logic, and learning.									
Торіс	Contents No. of Lectures								
Module 1	Fundamental issues in intelligent systems: History of artificial intelligence; 2 philosophical questions; fundamental definitions; philosophical questions; 2 modeling the world: the role of heuristics. 2								
Module 2	Search and constraint satisfaction: Probler first search; two-player games; constraint s	n spac atisfac	es; br tion.	ute-fo	rce se	arch; best-	10		
Module 3	Knowledge representation and reasonir predicate logic; resolution and theorem probabilistic reasoning; Bayes theorem.	8							
Module 4	Al planning systems: Definition and exampl search; operator-based planning; proposition	es of p onal pl	olannir annin	ng syst g.	:ems; p	olanning as	8		
Module 5	Sequential decision making: Achieving I Markov Decision Problems.	pehavi	our b	y spe	cifying	g rewards,	7		
		35							
Text Books	 Stuart Russell and Peter Norvig: Artifical Intelligence: A Modern Approach, Pearson; Third edition (2013). Elaine Rich, Kevin Knight and Shivashankar B Nair, Artificial Intelligence, Tata McGraw Hill, 3rd Edition 2009. 								
Reference Books	 N. J. Nilsson, "Principles of Artificial Intell Clocksin & Mellish, Programming in PRO 	igence LOG, N	e", Nar Narosa	osa Pu Publ.	ıblishir House	ng House, 19	980.		

Course Code	Course name	L	Т	Р	С	Year	Semester		
MA401	Stochastic Process	3	0	0	3	3 rd	6 th		
Торіс	Conten	ts					No. of Lectures		
Module-I	Review of random variables, expectations, expectations, convergence of a sequence of Minimum mean square error estimation an blocks of estimation theory.	09							
Module-II	Markov models. Classification and convo continuous-time Markov chains, Martingales.	07							
Module-III	Markov processes, orthogonal increment pro	Markov processes, orthogonal increment processes, and Brownian motion.							
Module-IV	Linear stochastic systems and estimation the algorithm-maximum likelihood paramete stochastic equations are introduced. Kalman	neory. r,Inno Filter	Expe vatior	ctatio 1 sec	n Ma quenc	ximization (EM) es and linear	10		
Module-V	State and parameter estimation and appl finance, biology and manufacturing.	icatio	ns to	queu	ies, c	ommunications,	07		

	Total 40	
Text	 A. Goswami and B.V. Rao, A Course in Applied Stochastic Processes, Hindustan Book Agency, 2006 U. N. Bhat and G. K. Miller, Elements of Applied Stochastic Processes, 3rd edition, Wiley, 2002. 	6.
Reference	1. S. M. Ross, Stochastic Processes, 2nd edition, Wiley, 1995.	

Course Code	Course name	L	Т	Р	С	Year	Semester
MA402	Number Theory and Cryptography	6 th					
Торіс	Conten	ts					No. of Lectures
Module-I	The number system and the Well-Ordering Principle, Mathematical InductionDivisibility and Factorization, Divisibility, Greatest Common Divisors, Euclidean Algorithm, Least Common Multiple, Representations of integers (Decimal Representation and Binary Representation of integers). Solving Linear Diophantine Equations, Primes, Prime Numbers, Unique Prime Factorization, Test of Primality by Trial Division						
Module-II	The concept of congruences, Congruence Check digits. Solving (single) linear congruence the Chinese Remainder Theorem.	07					
Module-III	Fermat's Little Theorem, general case: E multiplicative order Primitive Roots (mod n) primitive roots, The Existence Theorems, The The Legendre Symbol and its properties, symbol, Jacobi Symbol, Quadratic Residues a	10					
Module-IV	Continued fractions, Continued fraction cryptography, Diffie-Hellmann key exchan systems, RSA crypto-system, Signature Sch Signature schemes	08					
Module-V	Knapsack problem. Introduction to elliptic curon elliptic curves, Elliptic Curve Cryptogram factorization, Known attacks.	urves, ohy. A	Grou pplica	p stru tions	cture, in cr	Rational points yptography and	08
	r					Total	43
Text	 N. Koblitz, A Course in Number Theory at 2. I. Niven, H.S. Zuckerman, H.L. Montgome 	nd Cry ery, Ar	ptogr Intro	aphy, ductio	Spring on to t	ger 2006. heory of number	s, Wiley, 2006.
Reference	 L. C. Washington, Elliptic curves: number J. Silverman and J. Tate, Rational Points c 	theor on Ellip	ry and otic Cu	crypt irves,	ograp Spring	hy, Chapman & H ger-Verlag, 2005.	all/CRC, 2003.

Course Code	Course name	L	Т	Р	С	Year	Semester
MA308	Functional Analysis	3	1	0	4	3 rd	5th
Торіс	Conten	No. of Lectures					
	Normed Spaces, Norms. Banach spaces and	Comp	letene	ess. Ex	ample	es, including the	
Module-I	spaces Lp [0,1].Linear Maps and ContinuityBo	ounde	ed line	ar ma	ps. No	ormed spaces of	07
	linear maps. The open mapping and closed g	raph t	heore	ms.			
	Spaces of Continuous Functions Dual Space	es. Z	orn's	Lemm	na. Th	e Hahn-Banach	
	theorem. The space of continuous function						
Module-II	Stone-Weierstrass theorem.Hilbert SpacesIn	ner pi	roduct	space	es. As	sociated norms,	10
	and the Cauchy-Schwarz inequality. Orthog						
	Representation of functionals on Hilbert space						
	Orthonormal Sets, Orthonormal sets and sequences	uence	s, and	relate	ed res	ults. Application	
	to Fourier series and Legendre polynomials.S	pectr	al The	ory			
Module-III	The spectrum of an operator. Complex anal	ysis o	n Ban	ach sp	baces.	Non-emptiness	09
	and compactness of the spectrum. Self-adjo	int an	d unit	ary op	perato	ors. The spectral	
	radius formula, and the spectral mapping the	eorem	for po	olynor	nials.		

Module-IV	Compact Operators, Definition and basic properties of compact operators. The spectral theorem for compact self-adjoint operators. Application to differential equations. The Fredholm Index Definition of a Fredholm operator and its index. Atkinson's theorem. Invariance properties of the index.	09					
Module-V	Fourier and Wavelets Analysis The Fourier transform as and its properties. View of the Fourier transform as a unitary operator. Concept of a wavelet. The wavelet series. The integral wavelet transform. Inversion formula.	07					
	Total	42					
Toxt	1. B. V. Limaye, Functional Analysis, 2nd edition, Wiley Eastern, 1996.						
Техс	2. E. Kreyszig, Introduction to Functional Analysis with Applications, John Wiley and Sons, 1978.						
Reference	 Debnath and Mikusinski; Introduction to Hilbert Spaces with Applications, Acade (2005) L.B. Comunity A Course in Europtional Applying Springer, 1000 	mic Press; 3rd edition					
Text Reference	Total I. B. V. Limaye, Functional Analysis, 2nd edition, Wiley Eastern, 1996. 2. E. Kreyszig, Introduction to Functional Analysis with Applications, John Wiley and 1. Debnath and Mikusinski; Introduction to Hilbert Spaces with Applications, Acade (2005) 2. J.B. Conway, A Course in Functional Analysis, Springer, 1990.	42 I Sons, 1978. emic Press; 3rd edi					

Course Code	Course Name	L	Т	Р	С	Year	Semester	
CS307	Machine Learning	3	0	0	3	3 rd	6 th	
Course Objective: Machine learning is the science of getting computers to act without being explicitly programmed. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. This course will help the students to learn the necessary details to create next generation applications.								
Торіс	Hour							
Module I	Introduction: History of machine learning, Ba	sic co	ncept	S			3	
Module II	Supervised learning: Supervised learning setu Perceptron, Exponential family, Generative le discriminant analysis, Naive Bayes, Support v feature selection, Ensemble methods: Baggir	10						
Module III	Learning theory: Bias/variance trade-off, Univ VC dimension, Worst case (online) learning.	on an	d Che	rnoff,	/Hoeff	ding bounds,	7	
Module IV	Unsupervised learning: Clustering K-means, EM. Mixture of Gaussians, Factor analysis, PCA (Principal components analysis), ICA (Independent components analysis).						8	
Module V	Reinforcement learning and control: MDPs. E and policy iteration, Linear quadratic regulati approximation, Policy search.	Bellma on (Li	n equ QR), C	uatior)-lear	ns, Val ning. V	ue iteration /alue function	7	
						Total	35	
Text	 Ethem Alpaydin, Introduction to Ma Marsland, Stephen. Machine learnir 2011. 	chine ıg: an	Learr algor	ning, S ithmi	Secon c pers	d Edition, PHI, 20 pective. Chapma	010. In and Hall/CRC,	
Reference	 Murphy, Kevin P. "Machine Learning Machine Learning series)." (2018), MIT Press Brownlee, Jason. Machine Learning Accurate Models and Work Projects End-To-I 	g: A Pr Maste End. Ja	obab ery W ason I	ilistic ith Py Browr	Persp rthon: nlee, 2	ective (Adaptive Understand You 1016.	Computation and r Data, Create	

Course Code	Course name	L	Т	Р	С	Year	Semester
ME306	Environmental Sciences & Green Technology	2	0	0	2	3 rd	6 th
Course objective :T	inology.						
Торіс	Conte	No. of Lectures					
Module-I	Introduction to Environmental Pollution: En ecosystem, structure and function of an biogeochemical cycles, sources, pathways a	05					
Module-II	e-II Air pollution- Introduction, Segments of environment, Layers of atmosphere and their significance; Mechanism, Causative factors, Consequences and Preventive measures – Ozone depletion, Greenhouse effect and Global warming; Earth's radiation budget. Classification of air pollutants. Indoor air pollution. Smog-						

	photochemical and sulphurous, Acid rain, Air Quality Standards, Human health effects-Bhopal gas tragedy.	
Module-III	Water Resource; Water Pollution : Definition, Classification , Sources of Contamination, Pollutants & their Detrimental Effects; Water Quality: Portability limit – WHO and PHED Specification; Water Quality Monitoring, Municipal Water Treatment: Slow and Rapid Sand Filter, Disinfection – Methods, Advantages & Disadvantages, Sterilization	05
Module-IV	Soil and Noise pollution: Lithosphere and Soil profile, Soil contamination, sources of soil contamination, Important environmental properties of soil contaminants, Ecological & Health effects, Exposure & Risk Assessment; Noise pollution: Brief introduction to noise pollution, source, measurement and prevention of noise pollution	05
Module-V	Radioactive Pollution & Solid Waste Management: Radioactive pollutant: units of radiation and instruments for their measurements, types of radioactive pollutants and risk factor associated with these radiations Radioactive waste and their disposal, accidental leakage of radiation from nuclear reactors (discuss Chernobyl and Fukushima) Solid waste management different types of solid waste, composting, biological methods of detoxification of hazardous waste Onsite handling and composting, integrated solid waste management,	05
	Total	42
Text	 Miller, T. G. Jr., Environmental Science, Wadsworth Publishing House, USA. Masters, G.M. Introduction to Environmental Engineering. 	

Course Code	Course name	L	Т	Р	С	Year	Semester
HS401	Professional Ethics in Engineers	7 th					
Course objective: T	les, to instil Moral and						
Social Values and Lo							
Торіс	Conter	nts					No. of Lectures
Module-I	HUMAN VALUES: Morals, Values and Ethics Civic virtue, Respect for others, Living Courage, Valuing time, Cooperation, Con Character- Spirituality, Introduction to Y excellence and Stress management.	05					
Module-II	ENGINEERING ETHICS: Senses of Engineerin of inquiry- Moral dilemmas, Moral Autonor Consensus and Controversy, Models of pro Self-interest, Customs and Religion, Uses of	ral issues, types Gilligan's theory, s of right action,	05				
Module-III	ENGINEERING AS SOCIAL EXPERIMENTAT Engineers as responsible experimenters, Co	04					
Module-IV	SAFETY, RERSPONSIBILITIES AND ETHICS: Safety and Risk, Assessment of Safety and risk, Risk Benefit Analysis and Reducing Risk, Respect for authority, Collective Bargaining, Confidentiality, Conflict of interest, Occupational crime, Professional Rights, Employee Rights, Intellectual Property Rights (IPR), Discrimination						05
Module-V	GLOBAL ISSUES: Multinational Corporation ethics, Weapons Development, Engineers Engineers as Expert Witnesses and Advisor Corporate Social Responsibility	05					
						Total	24
Text	 Mike W Martin and Roland Schinzinger Govindarajan M, Natarajan S, Senthil K 	r, Ethio umar	cs in E V S, E	ngine ngine	ering, ering l	Tata McGraw Hill Ethics, Prentice Ha	, 2003. all of India, 2004.

Indian Institute of Information Technology Bhagalpur

B.Tech in Mathematics and Computing (MAC) – List of Electives

Specialization	Course Name	Dept.	Туре	Semester		
	Fluid Dynamics	MAC				
Applied	Mathematical Methods	MAC				
Mathematics	FEM	MEA				
	Image processing					
Data Science	Data Compression and Protection	CSE	Elective-I	VI		
and Computing	Computational Intelligence	ECE				
	Combinatorial Optimization	MAC				
Pure	General Topology	MAC				
Mathematics	Measure Theory	MAC				
Applied	Computational Fluid Dynamics	MAC				
Applied	Dynamical Systems	MAC	Elective-II / Elective-III			
Mathematics	Mathematical Modelling	MAC				
Data Science and Computing Pure Mathematics Applied Mathematics Data Science and Computing Pure Mathematics Applied Mathematics	Computational Geometry	CSE				
	Information Retrieval	CSE				
	Foundations of Cloud Computing	CSE				
	Introduction to Deep Learning	CSE				
	Computer Vision and Image					
	Processing	ECE	Elective-II / Elective-III /Open Elective			
	Parallel Algorithm	CSE		1/11		
	Block Chain Technology	CSE		VII		
	Introduction to Data Science	CSE				
	Information Theory & Coding	ECE				
	Fuzzy Logic Control	ECE				
Pure	Differential Geometry	MAC	Elective II / Elective III			
Mathematics	Representation Theory	MAC				
Applied Mathematics	Mathematical Biology	MAC				
Data Science	Graph Algorithms	MAC	Open Elective			
and Computing	Matrix Computation	MAC				

* Electives offered by Departments other than MAC are already approved in previous BoA meetings.

Indian Institute of Information Technology Bhagalpur

Course Code	Course name	L	Т	Р	С	Year	Semester
MA351	Fluid Dynamics	3	1	0	4	3 rd	6 th
Торіс	Content	S					No. of Lectures
Module-I	Review of gradient, divergence and curl. Elementary idea of tensors. Velocity of fluid, odule-I Streamlines and path lines, Steady and unsteady flows, Velocity potential, Vorticity vector.						
Module-II	2-II Conservation of mass, Equation of continuity. Equations of motion of a fluid, Pressure at a point in fluid at rest, Pressure at a point in a moving fluid.						07
Module-III	-III Euler's equation of motion, Bernoulli's equation. Singularities of flow, Source, Sink, Doublets, Rectilinear vortices.						07
Module-IV	Complex variable method for two-dimensio various singularities, Circle theorem, Blasius applications to various singularities. Three of Weiss's theorem and its applications.	09					
Module-V	Viscous flow, Vorticity dynamics, Vorticity ed strain analysis, Navier-Stokes equation, Bound	09					
	Total	42					
Text	M D Raisinghania, Fluid Dynamics, S. Chand P	ublica	tions				
Reference	G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1993. A. R. Patterson, A First Course in Fluid Dynamics, Cambridge University Press, 1992.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA352	Mathematical Methods	3	1	0	4	3 rd	6 th
Topic	Content	No. of Lectures					
Module-I	Power series solutions, recurrence relatior functions, Legendre polynomial, Laguerre Hermite polynomials.	09					
Module-II	Concept and calculation of Green's function, Properties, Green's function method for ordinary and partial differential equations.						07
Module-III	Fourier Series, Fourier Cosine series, Fourier transform, Laplace transform, Hankel trans transform.	08					
Module-IV	Solution of differential equations by integral t kernels of integral transforms on a finite inte Occurrence of integral equations.	09					
Module-V	Regular and singular integral equations: V integral equations, Volterra and Fredholm eq	olterr uatior	a inte is with	egral n diffe	equat rent t	ions, Fredholm ypes of kernels.	09
						Total	43
	A. D. Poularikas, The Transforms and Applicat	ions ⊦	landbo	ook, C	CRC Pr	ess, 1996.	
Text and	L. Debnath and D.D. Bhatta, Integral Transform	ns an	d Thei	r App	licatic	ns, Chapman and	Hall/CRC, 2011.
Reference	G. F. Roach, Green's Functions, Cambridge Ur	iversi	ty Pre	ss, 19	95.		
	Larry C. Andrews, Special Functions of Mather	matics	s for E	ngine	ers, O	xford University P	Press, 1997.

Course Code	Course name	L	Т	Р	С	Year	Semester
MA353	Combinatorial Optimization	3	1	0	4	3 rd	6 th
Торіс	Content	No. of Lectures					
Module-I	Matching and weighted matching in bipart matching.	09					
Module-II	Solving maximum flows, minimum-cost flows, network labelling and digraph search.						09
Module-III	Matroids: intersection, weighted matroid intersection, matroid parity.						07
Module-IV	Review of Linear programming: Analysis of Integer programming: total unimodularity, up	09					
Module-V	Approximation algorithms for various prob minimum multi-cut, edge coloring, bin packin	08					
	·					Total	43
Text Papadimitriou & Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Pl Schrijver, Combinatorial Optimization, Springer.						nd Complexity, PH	ΙΙ.
Reference	V. Vazirani, Approximation Algorithms, Springer 2005.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA354	General Topology	3	1	0	4	3 rd	6 th
Торіс	Content		No. of Lectures				
Module-I	Cardinal numbers, Cardinal arithmetic, Order numbers, Axiom of choice, Well ordering equivalence. The Metric Topology: Interior Closure of a Set, Hausdorff Topological Spaces Continuous Functions	09					
Module-II	Product Space, The Box Topology, Quotient Sp	07					
Module-III	Connected Spaces, Connected Subsets of the	07					
Module-IV	Compact Spaces, Local Compactness, One Pe Space, Tychonoff Theorem for Product Spaces	09					
Module-V	First and Second Countable Topological Spa Spaces, Urysohn Lemma, Baire Category Theo	09					
	•					Total	42
Text	ext G.F. Simmons, Introduction to General Topology, Wiley						
Reference	James R. Munkres, Topology, Second Edition, Prentice Hall, 1999. Stephan Willard, General Topology, Dover, 2004.						

Course Code	Course name	L	Т	Р	С	Year	Semester			
MA355	Measure Theory	3	1	0	4	3 rd	6 th			
Торіс	Topic Contents									
Module-I	09									
Module-II	Extension of Measure, Outer Measure and its Measure, Characterization of Lebesgue Measure Spaces.	09								
Module-III	Nonnegative Simple Measurable Functions an Theorem and Fatou's Lemma. Properties of Convergence Theorem.	09								
Module-IV	Lebesgue Integral and its Properties, Produc Introduction, Computation of Product Measur	07								
Module-V	Integration on Product Spaces, Fubini's Theo on R^2.	07								
						Total	42			
Text	I. K. Rana, An Introduction to Measure and Int G. de Barra, Measure Theory and Integration,	egrat New	ion, N Age Ir	arosa iterna	, 1997 tional	2.				
P.R.Halmos, Measure theory, Prentice Hall P.K.Jain & V.P.Gupta, Lebesgue Measure and Integration, Wiley Eastern Ltd.										

Course Code	Course name	L	Т	Р	С	Year	Semester
MA451	Computational Fluid Dynamics	3	0	2	4	4 th	7 th
Торіс	Content	S					No. of Lectures
Module-I	Introduction to Computational Fluid Dynamics and Momentum: Continuity and Navier St General Structure of Conservation Equations Classification of Partial Differential Equations Solutions of Differential Equations: Error Mini	09					
Module-II	Weighted Residual Approach, Discretization: I Finite Volume Method. Finite Volume Method: 1-D Steady State Dif Implementation and Discretization of Ur Equations, Stability Analysis -Second Order Hy Finite Volume Method: Discretization of 2-D U	09					
Module-III	Elimination Methods: Error Analysis, Iterativ Systems of Linear Algebraic Equations, Gradie	09					
Module-IV	Discretization of Convection-Diffusion Equ Discretization of Navier Stokes Equations.	ation	s: A	Finite	Volu	ume Approach,	07
Module-V	Fundamentals of Unstructured Grid Form Modeling.	07					
						Total	42
P.Niyogi, S.K.Chakrabortty and M.K.Laha- Introduction to Computational Fluid Dynam Text Delhi 2005 Atul Sharma, Introduction to Computational Fluid Dynamics: Development, Applicati							cs, Pearson education, n and Analysis, Wiley.

Reference

Course Code	Course name	L	Т	Р	С	Year	Semester
MA452	Dynamical Systems	3	1	0	4	4 th	7 th
Торіс	Conten	ts					No. of Lectures
Module-I	Linearization of Non-linear Systems, Limitatio Stability, Global Stability, Lyapunov Function, Invariance Principle,	ns, Ha Lyapu	artmar nov T	n–Gro heore	bman m on	Theorem, Local Stability, LaSalle	08
Module-II	Oscillations: Limit Set, Attractors, Periodic C Theorem, Bendixson-Dulac Criterion.	09					
Module-III	Discrete Dynamical Systems: Maps and Flow Portrait, Fixed Points, Stable and Unstable Fix Boundary, Linear Stability Analysis, Cobweb Di Stability of Periodic Point and Periodic Cyc Points, Schwarzian Derivative.	09					
Module-IV	Bifurcations in One-Dimensional Systems: Bifurcation, Transcritical Bifurcation. Bifurc Saddle-Node Bifurcation, Pitchfork Bifurca Bifurcation, Homoclinic and Heteroclinic Bifu Neimark-Sacker Bifurcation.	08					
Module-V	Sensitive Dependence on Initial Conditions Three Implies Chaos for 1-D Maps. Some Feigenbaum Number, Poincaré Section, Lyapu Examples of Chaos.	08					
						Total	42
G C Layek - An Introduction to Dynamical Systems, Springer S. H. Strogatz, Nonlinear dynamics and chaos with applications to Physics, B Engineering (Westview Press)							ology, Chemistry, and
Reference	Lawrence Perko, Differential Equations and Dynamical Systems, Springer J Hale and H Koack - Dynamics and Bifurcations, Springer.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA453	Mathematical Modelling	3	1	0	4	4 th	7 th
Торіс	Content	S					No. of Lectures
Module-I	Basic concepts of continuous-time dynamical with special emphasis on Hopf-bifurcation. C Hopf-bifurcation. Chaos. Different route to ch Lyapunov exponent.Introduction to continuo dimensionalisation techniques.	08					
Module-II	Stability criteria of a system. Routh-Hurw Boundedness of a system. Positiveness of Kolmogorov Analysis. Single species differen Logistic model, Model with harvesting, Mod model. Modeling predator functional respons IV, ratio-dependent, Beddington- DeAngelis.	09					
Module-III	Two and three species differential equation chain model. Model with one prey-two pre- preys. Model with generalist predator. M Modeling two and three species continuous t phenomena like imposition of a population intraspecific density dependence, toxic inhi dispersal, predator switching, Allee effect,	09					

	harvesting of predator, disease in predator, mutualism, commensalism, parasitism, fear factor, seasonal variation, cooperation, group defense, cross predation, anti predator, etc.	
Module-IV	Modeling of excitable systems. Chemostat Model. Tumour-growth model. Cancer model. HIV-model. Model of divorce prediction and marriage repair. Metapopulation and patch Model. Epidemic Models (SI,SIR, SIS, SIRS, SEIR etc).	08
Module-V	Models with time delay (single and double delay). Derivation of a critical delay for stability of a system. Periodic solutions.	08
	Total	42
Text	J.D. Murray, Mathematical Biology (Vol. I, II) (Springer-Verlag). J.N. Kapur, Mathematical models in biology and medicine, East-West Press Pvt. Ltd.,	
Reference	S. H. Strogatz, Nonlinear dynamics and chaos with applications to Physics, Bic Engineering (Westview Press). B.D. Hassard, N.D.Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation (Society.	ology, Chemistry, and London Mathematical
	Maia Martcheva, An Introduction to Mathematical Epidemiology, Springer.	

Course Code	Course name	L	Т	Р	С	Year	Semester
MA454	Differential Geometry	3	0	2	4	4 th	7 th
Topic	Content		No. of Lectures				
Module-I	Local theory of plane and space curves, Cu Frenet formulas, Fundamental Theorem of sp	09					
Module-II	Regular surfaces, Change of parameters, Dir Differential of a map.	09					
Module-III	Ile-III First and second fundamental form. Orientation, Gauss map and its properties, Euler's Theorem on principal curvatures. Isometries, and Gauss' Theorema Egregium.						
Module-IV	Parallel transport, Geodesics, Gauss-Bonnet tl of constant curvature.	07					
Module-V	Hopf-Rinow's theorem, Bonnet's theorem, J Riemann's Habilitationsvortrag.	07					
						Total	42
Text Barret O'Neill, Elementary Differential Geometry, Academic Press. T.J. Willmore, An introduction to Differential and Riemannian Geometry, Oxford Univ							ersity Press
Reference	J.A.Thorpe, Introduction to Differential Geometry, Springer-Verlag.						

Course Code	Course name	L	Т	Р	С	Year	Semester	
MA454	Representation Theory	3	1	0	4	4 th	7 th	
Торіс	Content	No. of Lectures						
Module-I	Fundamental concepts of representation theory. Representations and actions, one- dimensional representations. Finite Fourier analysis.							
Module-II	Irreducible representations of S3, ten representation.	07						
Module-III	Hom(V, W) representation. Symmetric and alt theorem and Schur's lemma.	ernat	ing po	wers.	Comp	olete reducibility	07	

Module-IV	Character Theory. Representations of S4 and A4. Character tables, orthogonality relations. Frobenius divisibility. Introduction to representations of Sn. Alternating powers of standard representation of Sn.	09			
Module-V	Module-V Bilinear forms and quaternionic representations. Finite subgroups of SO(3) and SU(2). Finite sub- groups of SO(3) and SU(2). Hamiltonian quaternions and SU(2). Schur indicator. Induced representations, definition and characterizations. Examples				
	Total	42			
Text	J.P. Serre , Introduction to representation theory, Springer GTM				
Reference	Fulton and Harris, Representation Theory, Springer GTM Barry Simon, Representation of Finite and Compact Groups, AMS, 1996.				

Course Code	Course name	L	Т	Р	С	Year	Semester
MA471	Mathematical Biology	3	1	0	4	4 th	7 th
Topic	Conten	No. of Lectures					
Module-I	Mathematical models: Deterministic and s models. P-V Logistic equation. Population gro Interactions between two species: Host-Para type of interactions. Trajectories of intera between two species. Effect of migration on H Lotka-Volterra equations. Generalized L-V e dynamical system.	08					
Module-II	Stochastic processes and need of stochastic process, Birth and death process. Linea processes. Effects of both immigration a population.	09					
Module-III	Biological mechanisms responsible for "time delay. The single species logistic model with equilibrium position for the logistic model w logistic model for discrete time lag. Time-d stability analysis.	09					
Module-IV	Introduction; Some basic definitions. Simpl model. Kermack-McKendrik threshold theo comparative study of these models. Control o model: Different case studies (i) Loss of imm emigration, (iii) Immunization. SIR endemic di	08					
Module-V	Fick's laws of diffusion, One-dimensional di solutions of two-dimensional diffusion equat equation to diffusion-reaction models arising Pharmaco-kinetics and ecology. Solutions dialyser by (i) separation of variables method parallel-plate dialyser.	08					
						Total	42
Text	J D Murray, Mathematical Biology, Springer-V J. N. Kapur, Mathematical Models in Biology a						
Reference	R. Rosen, Foundation of Mathematical Biology (vol. I& II), Academic Press M. Kot, Elements of Mathematical Ecology,Cambridge University Press.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA472	Graph Algorithms	3	0	2	4	4 th	7 th
Topic	Content	No. of Lectures					
Module-I	Introduction to Graphs: Definition and basic Graphs; Graph Searching: DFS and BFS; Ap connected components, bi-connected comp finding cycle in graph; Trees: Different MST a trees of a graph.	09					
Module-II	Paths and Distance in Graphs: Single source sl path problem, centre and median of a gra Hamiltonian Graphs: sufficient conditions for l problem; Eulerian Graphs: characterization Eulerian tour, The Chinese Postman problem.	09					
Module-III	Planar Graphs: properties of planar graphs, Coloring: vertex coloring, chromatic polyn coloring.	07					
Module-IV	Matching: maximum matching in bipartite g graphs; Networks: The Max-flow min-cut theo	07					
Module-V	NP-Complete Graph Problems: proving NP-C Hard Graph Problems. Approximation Algo Vertex Cover, Metric TSP	09					
	42						
Text	Cormen, Leiserson, Rivest, and Stein; Introductions to Algorithms, PHI. G. Chatrand and O.R. Oellermann, Applied and algorithmic Graph Theory, McGraw Hill.						
Reference	M C Golumbic, Algorithmic Graph Theory and Perfect Graphs, Volume 57 in the series-Annals of Discrete Mathematics. North Holland, second edition. D.B. West, Introduction to Graph Theory, 2nd Edition, PHI.						

Course Code	Course name	L	Т	Р	С	Year	Semester
MA473	Matrix Computation	3	0	2	4	4 th	7 th
Торіс	Content	No. of Lectures					
Module-I	Review of linear algebra: Vector spaces, Line eigen vectors. Floating point computations, IE roundoff errors; Sensitivity analysis and co decompositions, Gaussian elimination with pa	09					
Module-II	Banded systems, positive definite systems, analysis; Gram-Schmidt orthonormal process rotations; QR factorization, stability of QR fact	09					
Module-III	Solution of linear least squares problems decomposition (SVD), polar decomposition, N least-squares problems; Sensitivity analysis of	09					
Module-IV	Review of canonical forms of matrices; Sensi Reduction to Hessenberg and tridiagonal form quotient iterations.	07					
Module-V	Explicit and implicit QR algorithms for syn Reduction to bidiagonal form; Sensitivity ar vectors, conjugate gradient method, Golub-K	07					
	42						
Text	D. S. Watkins, Fundamentals of Matrix Compu L. N. Trefethen and D. Bau, Numerical Linear A						
Reference	B.N. Datta, Numerical Linear Algebra and app G. H. Golub and C. F. Van Loan, Matrix Compu						