Indian Institute of Information Technology Bhagalpur Computer Science and Engineering (CSE)

B.Tech. Course Curricula and Syllabus

Semester-IV

Curricula:

Course Code	Course name	L	Т	Ρ	С
<u>CS206</u>	Operating Systems	3	0	0	3
<u>CS205</u>	Formal Language and Automata Theory	3	1	0	4
<u>EC208</u>	Microprocessor and Interfacing	3	0	0	3
<u>CS204</u>	Database Management Systems	3	0	0	3
<u>MA203</u>	Probability and Statistics	3	1	0	4
CS212	Database Management Systems LAB	0	0	3	2
CS213	Operating Systems LAB	0	0	3	2
EC218	Microprocessor and Interfacing LAB	0	0	3	2

Syllabus:

Course Code	Course Name	L	Т	Ρ	С	Year	Semester			
CS206	Operating Systems	3	0	0	3	2 nd	4 th			
Objective: The objective of this course is to teach the fundamentals of computer Operating Systems.										
This course allows the students to understand the service provided by the operating system, what a										
process is and hov	v processes are synchronized and so	ched	lulec	l and	d dif	ferent appro	aches to memory			
management. It als	so explains the structure and organi	izati	on o	f the	e file	system and	different security			
issues in modern o	perating systems.									
Торіс							Hour			
Module I	Introduction: Introduction to opera	ating	syst	tems	, ор	erating	5			
	system operations.						5			
	Process management: Process con	cept	, mu	ltith	reac	led				
Module II	programming, Process scheduling, Inter process						10			
	communication and synchronization, Deadlocks; deadlock									
	detection, prevention and avoidan	ce.								
	Memory Management: Memory m	ana	gem	ents	strat	egies;				
Module III	paging, segmentation, virtual memory management; demand					; demand	8			
	paging, TLB, frame allocation and p	age	repl	acer	nent					
	algorithms.									
	Storage Management: File system,	file	ope	ratio	n an	d their				
Module IV	implementation, allocation, free sp	ace	mar	nage	men	t, directory	ry 6			
	management, mounting.									

Module V	Ile V I/O Management: disk drives and disk scheduling, basics of security.					
	34					
Text	 Silberschatz, A., Galvin, P. B., and Gagne G., Operating System Concepts. 8/e. Wiley, 2008. Tanenbaum, A. S. Modern Operating System. 3/e. Pearson. 2007. 					
Reference	 Stalling, W. Operating Systems: Internals and Design Principles. 6/e. Pearson, 2008. Dhamdhere, D. M. Operating SystemsA Concept Based Approach, McGrawHill, 2008. 					

Course Code	Course Name	L	Т	Ρ	С	Year	Semester			
CS205	Formal Language and Automata	3	1	0	4	2 nd	4 th			
Course Objective: The objective of this course is to provide students with an understanding							g of basic			
concepts in the theory of computation. The course explains and explores various concepts in automata										
theory and forma	al languages such as formal proofs, (non-)det	ermir	nistic	auto	omata, regular	expressions,			
regular language	s, context-free grammars, context-free la	angu	ages,	Turi	ng m	achines. It als	o aims to			
explain the powe	r and the limitations of regular language	s and	d con	text	-free	languages.				
Торіс							Hour			
	Basics and Finite Automata: Alphabets,	Lan	guage	e, Gr	amm	ars, NFA,				
Module I	DFA, NFA-DFA, Equivalence of NFA and	DFA	, Mir	nimiz	atior	n of FA,	8			
	Myhill-Nerode Theorem.									
	Finite State Models, Regular Grammar	and	Lang	Jage	: Bas	ic Definition,				
	Mathematical Representation, Moore	versu	is Me	ealy N	м/С,	Capability				
Module II	and Limitations of FSM, State Equivaler	nce 8	k Mir	imiz	ation	, Machine	10			
Would II	Equivalence. Regular Expression; Regular Grammar, Regular									
	Language, Pumping Lemma for Regular	Lan	guag	es, P	rope	rties of				
	Regular Languages.									
	Context Free Grammars and Language,	Pus	h Dov	wn A	utom	nata: CFG,				
	CFL, Derivations, Parse Tree, Parsing ar	nd Ar	nbigı	uity,	CFG a	and				
	Programming Languages, Transformati	on o	f CFG	iS, No	orma	l Forms,				
Module III	Membership Algorithms, Pumping Lem	10								
	CFLs. Non-Deterministic PDA, Instantar	Language								
	Recognized by PDA, PDA and CFL, Dete	rmin	istic	PDA,	and					
	Deterministic CFL.				<u> </u>					
	Turing Machines: Standard Turing Mac	hine, Design of Turing Machine,				_				
Module IV	Universal Turing Machine, Halting Problem, Non-Deterministic Turing						/			
	Machine.				•••••					
	Hierarchy of Formal Language and Automata: Operations on Formal						7			
Module V	Language and Their Properties, Chomsky Hierarchy, Context Sensitive									
	Grammars, Linear Bounded Automata, Recursive and Recursively									
	Enumerateu Language.					Tatal	42			
						rotar	42			

Text	 Introduction to Automata Theory, Languages and Computation; John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman; 3rd, Pearson India Education Services Pvt.Ltd; 2018. An Introduction to Formal Languages and Automata; Peter Linz, ; 6th, Jones and Bartlett India Pvt.Ltd; 2017.
Reference	 Elements of the Theory of Computation; H R Lewis, C H papadimitrou; 2nd Edition, Prentice Hall India; 2010. Introduction to the Theory of Computation; Michael Sipser, ; 3rd, Cengage; 2017.

Course Code	Course name	L T P C Ye					Semester
EC208	Microprocessor and Interfacings	2 nd	4 th				
Course objective: The main objective of the course is to familiarize students abo					out ha	rdware design	
including logic	design, basic structure and behaviour of the varie	ous	func	tiona	l mo	dules of	the computer
and how they	interact to provide the processing needs of the use	er.					
Торіс	Contents					No	o. of Lectures
	8086 Processor: Historical background, 8086	CF	U A	Archit	tectu	e.	
	Addressing modes, Machine language instruction	on fo	orma	ats, N	1achi	ne	
Module I	coding the program. Instruction Set of 8086:	Da	ta t	ransf	fer a	nd	08
	arithmetic instructions. Control/Branch Instruct	tion	s, Ill	ustra	tion	of	
	these instructions with example programs.						
	Logical Instructions, String manipulation	ins	truc	tions	, Fl	ag	
	manipulation and Processor control instructions,	Illu	stra	tion c	of the	se	09
Module II	instructions with example programs. Assemb	oler	Dir	ectiv	es a	nd	
	Operators, Assembly Language Programming and	dexa	amp	le pro	ogram	ıs.	
	Stack and Interrupts: Introduction to stack, Stac	k st	ruct	ure o	of 808	86,	
Module III	Programming for Stack. Interrupts and Interru	pt S	Servi	ce ro	outine	es,	08
	Interrupt cycle of 8086, NMI, INTR, Interrupt pr	ogra	amm	ning,	Passi	ng	
	parameters to procedures, Macros, Timing and L	Pela	/S.				
	8086 Bus Configuration and Timings: Physical me	emo	ory C)rgan	izatio	n,	
	General Bus operation cycle, I/O addressing	са	pabi	lity,	Spec	ial	
	processor activities, Minimum mode 8086 s	syste	em al:a a	and	IIMI	ng	
	diagrams, Maximum Mode 8086 System and Tim	ing /De	uiag	rams			09
iviodule iv	Basic Peripherals and their Interfacing with 8086	(Pd	11 I) 0255			of	
	Interfacing with 8086, Interfacing I/O ports, P		5255 'avh	o, ivic	Jues	7	
	Segment digits using 8255	ig r	еур	Uaru	anu	/-	
	Basic Deriphorals and their Interfacing with 2026	(Do	r+ 2)	· Into	orfaci	ng	
ModuleV	$\Delta DC - 0.808 / 0.809 DAC - 0.800 Stepper Motor using$	י גרמ ז 22י	ιι 2) 55 Τ	imer	825/	чб —	08
	Mode 0, 1, 2 & 3 and Interfacing programmes for	or ti	iese	moc	les. II	лт	

	21H DOS Function calls - for handling Keyboard and Display. Other	
	Architectures: Architecture of 8088 and Architecture of NDP 8087.	
	Total	42
Text	 Hall D.V., <i>Microprocessor and Interfacing-Programming and</i> McGraw-Hill, 2nd edition, 2008. R.S. Gaonkar, <i>Microprocessor Architecture, Programming and Ap</i> International, 5th edition, 2007. 	Hardware", Tata plications, Penram
References	 W. Stallings, Computer Organization and Architecture: Designing Prentice Hall, 6th edition, 2005. David A. Patterson, John L. Hennessy, Computer Architecture Approach, Morgan Kaufmann,3rd edition, 2002. 	f for Performance, e: A Quantitative

Course Code	Course Name	L	Т	Ρ	С	Year	Semester	
CS204	Database Management System	3	0	0	3	2 nd	4 th	
Course Object	Course Objective: This course provides fundamental knowledge of, and practical experience with,							
database cond	database concepts. In this course, you will create relational databases, write SQL statements to							
extract inform	nation to satisfy business reporting reques	sts, c	reat	e en	tity r	elationship di	iagrams (ERDs)	
to design data	bases, and analyse table designs for exce	ssive	e red	lund	ancy	. The course a	Ilso provides	
an introducto	ry level understanding of advanced topics	suc	h as	data	min	ing, informati	on retrieval	
etc.								
Торіс							Hour	
	Introduction to database management,	data	abs	trac	tion	and system		
Module I	structure. Entity relational model, entity	/ set,	, rela	ation	ship	sets,	6	
Woodle I	mapping cardinalities, keys, E-R diagram	ıs.					0	
Module II	Relational model, database schema, rela	ation	al al	gebi	ra, o	uter join and	5	
	manipulation of databases.						3	
	Tuple relational calculus: Example queri	es, f	orma	al de	finiti	ions and		
	safety of expressions; SQL: Query proce	ssing	g and	d opt	imiz	ation, set		
Module III	operations, aggregate functions, data de	efinit	tion	lang	uage	and views,	6	
	comparison of queries in relational alge	bra,	SQL,	tup	le re	lation		
	calculus and domain relation calculus.							
	Relational database design, various nor	mal f	orm	s, fu	nctic	onal		
Module IV	dependencies, canonical cover, lossless	<i>c</i>	10					
	preservation, multi value dependency a	nd h	ighe	r no	rmal	torms,		
	transaction management, ACID propert	y.						
	Serializability and testing for serializabili	ity, c	onci	urrer	псу с	ontrol		
	schemes, lock-based protocols, two-pha	ise lo	ockir	ng pr	otoc	ols, graph-		
Module V	based protocols, time stamp-based prot	tocol	s, de	eadlo	ocks.	Recovery	10	
	systems, log-based recovery, deferred and immediate database							
modification, object oriented database design.								
						Total	37	
	1. Database System Concepts; Abraham	Silb	ersc	hatz,	, Her	ry F Korth; 6t	h, McGraw Hill	
Text	Education (India) Pvt. Limited; 2013.							
	2. An Introduction to Database Systems; C J Date, A Kannan, S Swamynathan; 8th,							

	Dorling Kindersley (India) Pvt. Ltd.; 2013.
Reference	 Abraham, H. and Sudershan, S., "Database System Concepts", 4th Ed., McGraw-Hill, 2002 Elmasi, R. and Navathe, S.B., "Fundamentals of Database Systems", 4thEd., Pearson Education., 2005

Course Code	Course name	L	Т	Ρ	С	Year	Semester
MA203	Probability and Statistics	3	1	0	4	2 nd	4 th
Topic	Conter	No. of Lectures					
Module-I	Basic Probability: Sample Space and Probability, equally likely events, in Probability, Expectations; Rando Continuous Probability Distributions. Functions.	Even Idepe m . Mor	ts. Th ender Varia ment	ne no nt ev ables s, Mo	vents vents : D omer	and axiom of ; Conditional iscrete and at Generating	08
Module-II	Distributions:Binomial-Poisson-Geor exponential-Gamma; Two Dimensi Distribution, Marguinal and Condi Correlation Coefficient, Linear Regres	metri onal tiona ssion	c-Un Ran I Dis	iform dom tribu	n-Noi Vai ition,	rmal- riables: Joint Covariance,	10
Module-III	Transformation of random variable Central Limit Theorem, distribution sample variance for a normal po distributions. Descriptive Statistic measures of locations and variability	es, S s of pulat cs:	ampl the s tion, Grap	ing I samp Chi- hical	Distri Ile m squa re	butions: The lean and the re, t- and F presentation,	09
Module-IV	Estimation: Unbiasedness, Consisten the method of maximum likelihood for parameters in one sample and t populations, confidence intervals for	cy, tł estin wo s prop	ne me natio ampl portic	ethoo n, co le pro ons.	d of r nfide obler	noments and ence intervals ms of normal	07
Module-V	Testing of hypotheses: Null and alternative and acceptance regions, two types most powerful test and Neyman-Pear for one sample and two sample protests for proportions, Chi-square applications.	ernat of er rson obler good	ive h ror, Func ms fo dness	powe lame or no s of	hese er of ntal rmal fit	s, the critical the test, the Lemma, tests populations, test and its	09
						Total	43
Text	 P G Hoel, S C Port, C J Stone, Intr 2000. J. Medhi, Stochastic Processes, N 	oduc ew A	tion ge In	to Pr	<i>obab</i> ation	al, 4 th edition,	niversal Book Stall; 2017.
Reference	1. R. D. Yates and D. J. Goodman, F edition, 2012.	Proba	bility	' and	Stoc	hastic Process	es, Wiley India, 2 nd