Indian Institute of Information Technology Bhagalpur Electronics and Communication Engineering (ECE)

B.Tech. Curricula and Syllabus

Semester-III

Curricula:

Course	Course name	L	Т	Ρ	С
Code					
<u>MA201</u>	Engineering Mathematics III	3	1	0	4
<u>CS203</u>	Object Oriented Programming	3	0	0	3
<u>EC207</u>	Analog Communication	3	0	0	3
<u>EC201</u>	Electromagnetic Theory	3	0	0	3
<u>EC209</u>	Measurement & Instrumentation	3	0	0	3
<u>HS201</u>	Management Concepts and Technology	2	0	0	2
CS211	Object Oriented Programming LAB	0	0	3	2
EC214	Analog Communication LAB	0	0	3	2
SAI	Society Internship Program	0	0	0	1

Syllabus:

Course Code	Course name	L	Т	Ρ	С	Year	Semester
MA201	Engineering Mathematics III	3	1	0	4	2 nd	3 rd
Торіс	Conter	nts					No. of Lectures
Complex numbers and elementary properties. Complex functions -Module-Ilimits, continuity and differentiation. Cauchy-Riemann equations.Analytic and harmonic functions.							08
Module-II	Elementary functions. Anti-derivatives and path (contour) integrals. Cauchy-Goursat Theorem. Cauchy's integral formula, Morera's Theorem. Liouville's Theorem, Fundamental Theorem of Algebra and Maximum Modulus Principle. Taylor series. Power series. Singularities and Laurent series.						09
Cauchy's Residue Theorem and applications. Mobius transformations;Module-IIIPartial Differential Equations: First order PDEs; solutions of linear and nonlinear first order PDEs: classification of second-order PDEs.							08
Module-IV Method of characteristics lin PDE; boundary and initial value problems (Dirichlet and Neumann type) involving wave equation, heat conduction equation, Laplace's equations and solutions by method of separation of variables; initial boundary value problems.						08	
Module-V	10						
						Total	43

	1.	B S Grewal, J S Grewal, J K Dhanoa, Higher Engineering Mathematics, Khanna
Text		Publishers, 44 th edition, 2017.
	2.	E. Kreyszig, H. Kreyszig, E. J. Norminton, Advanced Engineering Mathematics, 10 th ,
		Wiley India Pvt. Ltd., 2017
	1.	Ian N Sneddon, Elements of Partial Differential Equations, Dover Publications; 2006.
	2.	John H Mathews, Russell W Howell, Complex Ananlysis for Mathematics and
Reference		Engineering, Jones and Bartlett India Pvt.Ltd, 6 th edition, 2011.
	3.	James Ward Brown, Ruel V Churchill, Complex Variables and Applications, Tata
		McGraw Hill Education, 8 th edition, 2016.

Course Code	Course Name	L	Т	Ρ	С	Year	Semester				
CS203	Object oriented Programming	3	0	0	3	2 nd	3 rd				
Course Object	ive: The course is designed to provide stude	ents	with	com	plete	e knowledge of	^f Object				
Oriented. Prog	gramming through C++ and to enhance the	prog	ramr	ning	skill	s of the studen	ts by giving				
practical assig	nments to be done in labs. The course also	aims	to p	rovic	de st	udents with re	quisite				
knowledge ab	out Object Oriented Programming through	C++ :	so th	at th	iey n	nake their own					
Applications/F	Projects using C++.										
Topic							Hour				
	Principles of OOPs, Basics of C++, Function	is in	c++ :	Basi	c Co	ncepts of					
	OOP, Benefits of OOP, OOP Languages, Ap	plica	tion	s of (JOP.	C++					
	program basics, data types, operators in c	++, s	cope	resc	Diutio	on, type cast	6				
Module I	operators, operator overloading, operator	pre	cede	nce.	IVIali	n function,					
	runction prototyping, call by reference, ini	ine r	unct	ions,	dera	d and virtual					
	functions, maths library functions	over	loau	ing, i	nen	u anu virtuai					
Tunctions, maths library functions.					rovicitod						
	specifying a class defining a member func	tion	- C S	ato r	nom	her					
	functions memory allocation for objects	stati	, priv r dat	ale i a me	mhe	ars and					
Module II	member functions array of objects objects	ts as	func	tion	argu	iments	6				
inicadic ii	friendly functions, returning objects, point	ters t	o me	-mbe	ers o	constructors	Ũ				
	Parametrized constructors. Multiple const	ruct	ors. (ζορν	con	structor.					
	Destructors.		,			,					
	Operator overloading, inheritance, virtual	func	tions	s and	l pol	ymorphism –					
	Overloading unary operators, overloading	bina	iry oj	perat	tors,	rules for					
	overloading operators, type conversions. I	Deriv	ved c	lasse	es, sir	ngle					
Module III	inheritance, multilevel inheritance, multip	le in	herit	ance	, hie	rarchical	8				
	inheritance, hybrid inheritance, virtual bas	se cla	asses	, abs	trac	t classes,					
	nesting of classes. Pointers, pointer to obj	ects,	this	poin	ter,	pointer to					
derived classes, virtual functions, pure virtual functions.											
	Console I/O operations, working with files	and	tem	plate	es – (C++ streams					
Module IV	and stream classes, unformatted I/O oper	atior	ns, fo	rmat	tted	console I/O	8				
	operations, managing output with manipu	lato	rs. Cl	asse	s for	file stream	Ğ				
	operations, opening/closing of file, file poi	inter	s and	d the	ir ma	anipulation,					

Module V	Exception handling and Standard template library – Basics of exception handling, exception handling mechanism, throwing mechanism, catching mechanism, rethrowing exception, specifying exception. Components of STL, Containers, Algorithms, Iterators, Application of Container classes, Functions objects.					
		Total	34			
Text	 1. Object Oriented Programming with C; E Balagurusamy, ; 7th, McGraw Hill Education (India) Pvt. Limited; 2018. 2. The Complete Reference C++ (Indian Edition); Herbert Schildt, ; 4th, McGraw Hill Education (India) Pvt. Limited; 2017. 					
Reference	1. The C++ Programming Language; Bjarne Stroustrup, ; 3rd, Pearson India Education Services Pvt.Ltd; 2017.					

Course Code	Course name	L	Т	Ρ	С	Year	Semester	
EC207	Analog Communication	3	0	0	3	2 nd	4 th	
Course objective	Course objective: This course is intended to cover the basic principles and co							
communication sy	ystems. It includes theory and circu	its of	f Amj	olitud	de m	odulation and	d Angle modulation.	
It covers sampling	g of analog signal and generation o	f PAI	M, PF	PM, F	PWM	signals. Basi	c digital modulation	
techniques like	ASK, FSK, PSK, PCM and DM a	re al	so ii	ncluc	led i	n the cours	se. Performance of	
communication sy	ystem in the presence of noise is als	50 CO	nside	ered.				
Topic	Conte	nts					No. of Lectures	
	Basic blocks in a communication	syst	em:	tran	smitt	er, channel		
Module-I	and receiver; baseband and	pass-	band	l sig	nals	and their	04	
	representations; concept of modu	ulatio	n an	d der	nodu	ulation		
	Amplitude modulation (AM): -	Tim	e do	mair	n exp	pression of		
	baseband signal; modulation inde	x, fre	equer	ncy d	omai	in (spectral)		
	representations, phasor diagram,	, AM	tran	smis	sion	bandwidth;		
	ANI for a single tone messa	ige-	carr	ier a	ana	side band		
	nower and side hand nower.	literne			AIVI,	normalized		
	power and side band power. L	timo	and	Je D I fro	anu auon	suppressed		
Module-II	expressions: Transmission require	mon	anu ts for		yuen ban	dwidth and	10	
	transmission nower for DSB-SC.	Gone	ratio	n of				
	law modulators balanced m	odula	ators	riı	טכט זס r	nodulators		
	switching modulators. Single side	ban	d mo	, dula	tion	(SSB):-Basic		
	concept. SSB with suppressed/re	duce	d car	rier.	adva	intages and		
	generation of SSB: transmit band	d wid	lth ai	nd p	ower	, side band		
	filter examples; Vestigial side ban	d mo	dulat	tion (VSB)			
	Demodulation of AM signals- squa	re la	w and	denv	elop	e detectors;	10	
iviodule-III	The super heterodyne receive	er fo	or st	tanda	ard	AM radio;	10	

	Synchronous demodulation of AM, DSB and SSB using synchronous detection, Effects of frequency and phase errors in the local oscillator in DSB and SSB Demodulation of SSB with pilot carrier, use of SSB in telephony. Phase-Locked Loop (PLL):- Carrier recovery circuits, Basic operation of PLL, mathematical analysis, applications					
Module-IV	Angle Modulation (FM/PM): Instantaneous frequency instantaneous phase, time domain representation for FM and PM; Narrow band angle modulation with frequency and phase, modulation index, Phasor diagram; FM and PM signals for a single tone message, spectral representation, power and effective bandwidth; Generation of wide band FM using Armstrong method, commercial FM requirements. Detection of FM and PM signals, limiter discriminator; Demodulation of PM using PLL; FM broadcasting and stereo FM radio	09				
Module-V	Noise Performance of Analog Communication Systems: Signal- to-noise ratio (SNR) in linear modulation, synchronous detection of DSB; SNR for AM, DSB and SSB; comparison of DSB, SSB and AM; Effect of noise in envelope and square law detection of AM, threshold effects in nonlinear detectors; SNR for FM, SNR improvement using pre-emphasis and de-emphasis. FM threshold effects; Comparison of linear and exponential modulation system for additive white band-limited noise channels.	09				
	Total	42				
Text	 R. P. Singh, S. Sapre, <i>Communication Systems: Analog and D</i> Hill, 4th edition, 2017. S. Haykin, <i>Communication Systems</i>, John Wiley & Sons, 4th edition 	<i>igital</i> , Tata McGraw ition, 2006.				
Reference	 H. Taub and D. L. Schilling, and G. Saha, <i>Principles of Communication Systems</i>, Tata McGraw Hill, 4th edition, 2017. G. Proakis and M. Salehi: <i>Communication Systems Engineering</i>, Pearson Education, 2nd edition, 2015. 					

Course Code	Course name	L	Т	Ρ	С	Year	Semester
EC201	Electromagnetic Theory	3	0	0	3	2 nd	4 th
Course objecti	red to understand,						
develop, and	design various engineering applicat	ions	invo	lving	ele	ctromagnetic	fields. To lay the
foundations of	electromagnetism and its practice ir	n mo	dern	com	muni	ications such a	as wireless, guided
wave principles such as fiber optics and electronic electromagnetic structures.							
Торіс	Contents						No. of Lectures
Module-I	Concept of coordinate system, In Differential length, Area and Volu Integrals, Divergence Theorem, S Coulomb's and Gauss' laws for Laplace's equations; Biot-Savart's I for magnetostatics, Magnetic vect	ter (ume, toke ele law, cor p	Coord Line s's T ctros Gaus oten	linate , Sur heor static s's a tial;	e Tra face em, s, Po nd A Magr	nsformation, and Volume Static fields: pisson's and mpere's laws netic dipoles,	09
	Magnetization and behavior of mag	gneti	c mat	terial	s.		

Module-II	Maxwell's Equation: Maxwell's discovery, Maxwell's equations in point form and integral form, conversion of one form of Maxwell's equations on other form, displacement current, Faraday's law of electromagnetic induction	08			
Module-III	Boundary Conditions: Fields in Media and Boundary Conditions, Boundary Conditions for Dielectric and Dielectric, Conductor and Dielectric, Conductor and Free Space; Method of images and boundary value problems; Equation of continuity, Boundary conditions for current density	08			
Module-IV	Electromagnetic Fields: The wave equation, General form of wave equation for perfect dielectric conditions, Wave propagation in lossy dielectric medium, Wave propagation in good dielectrics, good conductor, Lossless dielectric and in free space. Power flow and pointing vector, Refection of uniform plane waves by perfect dielectric - Normal incidence, Oblique incidence	09			
Module-V	Transmission Lines: Introduction; Line equations, Evaluation of propagation constant, Phase constant, Phase Velocity and characteristic impedance for lossless line and distortion less line, Design concept, Power handling capacity, Smith chart, The Terminated lossless line, Group Velocity, Dispersion	08			
	Total	42			
Text	 M. N. O. Sadiku, <i>Elements of Electromagnetics</i>, Oxford University 2000. N. Ida, <i>Engineering Electromagnetics</i>, Springer, 4th edition, 2020. 	y Press, 3 rd edition,			
Reference	1. K. E. Lonngren & S. V. Savov, <i>Fundamentals Electromagnetics with MATLAB</i> , PHI, 1 st edition, 2005.				

Course Code	Course name	L	Τ	Ρ	С	Year	Semester
EC209	Measurements & Instrumentation	3	0	0	3	2 nd	3 rd
Course objective: The main objective of this course is to provide an introduction to the field of							
Instrumentation and covers process variables and the various instruments used to sense, measure,							
transmit and control these variables.							
Торіс	Contents					No. of Lectures	

Торіс	Contents	No. of Lectures
Module-I	Definition of instrumentation. Static characteristics of measuring devices. Error analysis, standards and calibration. Dynamic characteristics of instrumentation systems; AC/DC current and voltage meters, ohmmeter; loading effect. Measurement of power and energy; Instrument transformers. Measurement of resistance, inductance, capacitance. ac/dc bridges.	09
Module-II	Measurement of non-electrical quantities: transducers classification; measurement of displacement, strain, pressure, flow, temperature, force, level and humidity; Instrumentation amplifier, isolation amplifier, and other special purpose amplifiers	09
Module-III	08	

Module-IV	Modern electronic test equipment: Oscilloscope, DMM, frequency counter, wave/ network/ harmonic distortion/ spectrum analyzers, logic probe and logic analyzer.	08				
Module-V	Data acquisition system; PC based instrumentation, Programmable logic controller: ladder diagram. Computer controlled test systems, serial and parallel interfaces, Field buses. Smart sensors. Bio medical Instruments.	08				
	Total	42				
Text1. A. D. Helfrick and W. D. Cooper, Modern Electronic Instrumentation and Measuring Techniques; Pearson Education, 1 st edition, 1996.2. E. O. Deobelin, Measurement Systems - Application and Design; Tata McGraw-Hill, 1 st edition, 1990.						
Reference	eference 1. B. M. Oliver and J. M. Cage, <i>Electronic Measurements and Instrumentation</i> , Tata McGraw-Hill, 1 st edition, 1975.					

Course Code	Course name	L	Т	Ρ	С	Year	Semester
HS201	Management Concepts and Technology	2	0	0	2	2 nd	3 rd
Торіс	Contents						No. of Lectures
Module-I	Principles of Management: Concept of Management, Functions of Management, Planning and its Nature & Organising, Designing organizational Structure, Authority relationships,						04
Module-II	Delegation of Authority. Staffing: Motivation and its Theory, Leadership Communication. Directing, Controlling & its techniques. Coordinating; Principles of Economic: Microeconomics: Concept of consumption, production, exchange, distribution.						05
Module-III	Demand analysis: Concept, kind of demand, change in demand, law of demand; Utility analysis: Marginal, total, consumer surplus, consumer equilibrium; Production analysis: Law of supply, different factors of production, law of returns, economies of scale.						06
Module-IV	Cost analysis: Cost concept, importance of cost behaviour, cost classification; Pricing analysis: Different kinds of markets, pricing & equilibrium in different markets - perfect, imperfect, monopoly.						05
Module-V	Income distribution: Briefing them about rent, wages, interest and profit. The international economics: Changing scenario, globalization, structural adjustment programme, stabilization policy, the multinational corporation. IBRD, IMF, GATT, WTO, ITO, IDA, IFC, MIGA.						05
Total							25
Text	 Business Organisation& Manager Essentials of Management - Harc An introduction to Positive Econor Modern Microeconomics; A. Kou Managerial Economics - Analysis Business Economics; ManabAdhi 	ment old Ko omic: itsoyi , Prol kary.	: - C.F pontz s; Lip ianni: blem	R Bas , Hei sey. s. s anc	u. ngW I Cas	erhrich. es; P.L. Mehta.	