Indian Institute of Information Technology Bhagalpur Electronics and Communication Engineering (ECE)

B.Tech. Curricula and Syllabus

Semester-VI

Curricula:

Course Code	Course name	L	т	Ρ	С
<u>EC305</u>	Antenna & Microwave Engineering	3	0	0	3
<u>EC306</u>	Optical Communication & Networks	3	0	0	3
<u>EC307</u>	Computer Vision and Image Processing	3	0	0	3
<u>EC308</u>	Recent Trends in Wireless Communication	3	0	0	3
<u>ME306</u>	Environmental Sciences & Green Technology	2	0	0	2
	Elective-I	3	1	0	4
EC314	Antenna & Microwave Engineering LAB	0	0	3	2
EC315	Optical Communication LAB	0	0	3	2
EC316	Computer Vision and Image Processing LAB	0	0	3	2

Syllabus:

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC305	Antenna & Microwave Engineering	3	0	0	3	3 rd	6 th	
Course object	Course objective: The main objective of the course is to provide the participants an ir							
aspects of the	RF, microwave, mm-wave and Teraher	tz in	nagin	g tec	hniq	ues for biomedi	cal, industrial and	
security applic	ations.							
Торіс	Conter	nts					No. of Lectures	
	Distributed elements concept, Teleg	-		-				
Module-I	lossy lines, Line impedance and junc						09	
	TM Waves, Coaxial cable, Rectangul							
	L-section impedance matching, sin							
Module-II	Quarter wave transformer, Theory of small reflections, Multi section						08	
	matching transformer, Tapered lines.							
	N-port microwave networks, Impedan							
Module-III	scattering matrix representations, Re	08						
	Network matrices transformations, Ed							
	Microwave Passive Circuits: RLC, N		-			•		
	resonators; Periodic structures and mi					5		
Module-IV	directional couplers and power divide						09	
	Microwave Integrated Circuits:						07	
	integrated circuits; design of single st	age	ampli	fier	and o	oscillator; PIN		
	diode based control circuits.							

Module-V	Microwave Tubes: Limitations of conventional tubes, Klystron amplifier, Reflex klystron oscillator, Magnetrons, Travelling wave tubes; Microwave solid-state devices: Characteristics of microwave bipolar transistors and FET, Transferred electron devices, avalanche diode oscillators.	08				
	Total	42				
Text	 David M. Pozar, <i>Microwave Engineering</i>; Wiley-IEEE Press, 4th edition, 20 A. Das and S. K. Das, <i>Microwave Engineering</i>, Tata McGraw-Hill, 3rd edit 					
Reference 1. R. E. Collin, <i>Foundations for Microwave Engineering</i> ; Wiley-IEEE Press, 2 nd edition, 2005.						

Course Code	Course name	L	Т	Р	С	Year	Semester
EC306	Optical Communication & Networks	3	0	0	3	3 rd	6 th
•	Course objective: The objective of this course is to have exposure to the basics of through optical fibers, fiber impairments, components and devices and system design						
Торіс	Content						No. of Lectures
<u>Module-I</u>	Optical spectral bands, basic optical laws and definitions, optical fiber modes and configurations, fiber materials, photonic crystal fibers, fiber fabrication, Fiber optic cables; LEDs and Laser Diodes: Quantum efficiency, LED power, modulation of an LED; Laser diodes: modes, external quantum efficiency, resonant frequencies, structure and radiation patterns, single mode lasers, modulation of laser diodes; Power launching and coupling, Fiber splicing, optical fiber connectors;						08
<u>Module-II</u>	Noises and Sensitivity and System Performance: Photo detectors, detector response time, avalanche multiplication noise; Signal degradation, Attenuation, absorption, scattering losses, bending losses, core and cladding losses; Distortion in Fibers: Modal delay, group delay, material dispersion, waveguide dispersion, polarization- mode dispersion; Characteristics of single mode fibers						09
<u>Module-III</u>	Fundamental receiver operation, dig diagrams; coherent detection, burst m Digital links, power penalties; transmission techniques; operational SONET, passive optical star coupler, i	09					
Module-IV	Variable optical attenuators, tuneable equalizers, polarization control compensators; Optical amplifiers; Er (EDFA): Amplifier noise, optical SNR	08					
<u>Module-V</u>	Performance Measurement and Monit basic test equipment, optical power characterization, eye diagram reflectometer, optical performance m switches.	08					
						Total	42
Text	 G. Keiser, Optical Fiber Communication J. C. Palais, Fiber Optic Communication 						n, 2010.

Reference	1. J. M. Senior, Optical Fiber Communications Principles and Practice; Pearson, 3rd edition,
Kelerence	2011.

Course Code	Course name	L	Т	Р	С	Year	Semester
EC307	Computer Vision and Image Processing	3	0	0	3	3 rd	6 th
will enable the solving. Lab exe	Course objective: To introduce the student to computer vision algorithms, methods will enable the student to implement computer vision systems with emphasis on appli solving. Lab exercises will familiarize the student with typical hardware as well as so tools. Students will use the C programming language or M-files in MATLAB to implement algorithms						
Торіс	Conte	nts					No. of Lectures
<u>Module-I</u>	Image representation-Gray scale and and quantization.; Two dimensiona FFT, WHT, Haar transform, KLT filters in spatial and frequency doma homomorphic filtering.; Edge deter based approaches, LOG filters, loca	al ort , DC uns, l ction	hogo T.; histog -non	nal t Imag gram para	ransf ge er -base metr	forms - DFT, hancement - d processing,	09
<u>Module-II</u>	Image Restoration - PSF, circulant deconvolution, restoration using in and maximum entropy-based metho	vers					07
<u>Module-III</u>	Mathematical morphology - binary opening and closing, duality relat applications such as hit-and-miss decomposition.	tions	, gr	ay s	cale	morphology,	08
Module-IV	Computer tomography - parallel beam projection, Radon transform, and its inverse, Back-projection operator, Fourier-slice theorem, CBP and FBP methods, ART, Fan beam projection.; Image communication - JPEG, MPEGs and H.26x standards, packet video, error concealment.						08
Module-V	Image texture analysis - co- occurrence matrix, measures of textures, statistical models for textures. Misc. topics such as - Hough Transform, boundary detection, chain coding, and segmentation, thresholding methods.						08
						Total	40
Text1.A. K. Jain, Fundamentals of digital image processing, Prentice Hall, 192.R.M. Haralick, and L.G. Shapiro, Computer and Robot Vision, Vol-1, 41992.							
Reference:	1. R. Jain, R. Kasturi and B.G. Schun Edition, 1995.	ck, M	lachir	ne Vis	ion, T	Гаta McGraw-H	ill International

Course Code	Course name	L	Т	Р	С	Year	Semester
EC308	Recent Trends in Wireless	2	0	0	2	3rd	6 th
EC300	Communication	5	0	0	3	5	0
Course object	Course objective: To expose the students to understand mobile radio communication principles and to						
study the recent	study the recent trends adopted in cellular systems and wireless standards.						
Topic	Contents					No. of Lectures	

Module-I	Introduction: Diversity-multiplexing trade-off, transmit diversity schemes, advantages and applications of MIMO systems	06
<u>Module-II</u>	Analytical MIMO channel models: Uncorrelated, fully correlated, separately correlated and keyhole MIMO fading models, parallel decomposition of MIMO channel. Power allocation in MIMO systems: Uniform, adaptive and near optimal power allocation.	09
Module-III	MIMO channel capacity: Capacity for deterministic and random MIMO channels, Capacity of i.i.d., separately correlated and keyhole Rayleigh fading MIMO channels.	07
Module-IV	Space-Time codes: Advantages, code design criteria, Alamouti space-time codes, SER analysis of Alamouti space-time code over fading channels, Space-time block codes, Space-time trellis codes, Performance analysis of Space-time codes over separately correlated MIMO channel, Space-time turbo codes. MIMO detection: ML, ZF, MMSE, ZF-SIC, MMSE-SIC, LR based detection.	09
Module-V	Advances in MIMO wireless communications: Spatial modulation, MIMO based cooperative communication and cognitive radio, multiuser MIMO, cognitive-femtocells and large MIMO systems for 5G wireless.	09
	Total	40
Text	 B. Clerckx and C. Oestges, <i>MIMO wireless networks</i>, Elsevier Academ 2013. N. Costa and S. Haykin, <i>Multiple-input multiple-output channel models</i>, 2010. 	
Reference:	 T. M. Duman and A. Ghrayeb, <i>Coding for MIMO communication syste</i> Sons, 2007. A. Chokhalingam and B. S. Rajan, <i>Large MIMO systems</i>, Cambridge Ur 	

Course Code	Course name	L	Т	Р	С	Year	Semester
ME306	Environmental Sciences & Green Technology	2	0	0	2	3 rd	6 th
Course objecti technology.	Course objective: To bring in the importance and the underlying principles of greatechnology.						en and sustainable
Topic	Conte	nts					No. of Lectures
Module-I	Introduction to Environmental Pollution: Environmental Awareness, Concept of an ecosystem, structure and function of an ecosystem, energy and nutrient flow, biogeochemical cycles, sources, pathways and fate of environmental pollutants.						05
<u>Module-II</u>	Air pollution- Introduction, Segme atmosphere and their significance; Consequences and Preventive r Greenhouse effect and Global war Classification of air pollutants, photochemical and sulphurous, Ac Human health effects-Bhopal gas tr	Mee neast ming Inde cid ra	chani ures g; Ea oor ain, A	sm, – rth's air	Caus Ozon radi pollu	ative factors, e depletion, ation budget, tion, Smog-	05

Module-III	Water Resource; Water Pollution : Definition, Classification , Sources of Contamination, Pollutants & their Detrimental Effects; Water Quality: Portability limit – WHO and PHED Specification; Water Quality Monitoring, Municipal Water Treatment: Slow and Rapid Sand Filter, Disinfection – Methods, Advantages & Disadvantages, Sterilization	05
Module-IV	Soil and Noise pollution: Lithosphere and Soil profile, Soil contamination, sources of soil contamination, Important environmental properties of soil contaminants, Ecological & Health effects, Exposure & Risk Assessment; Noise pollution: Brief introduction to noise pollution, source, measurement and prevention of noise pollution	05
<u>Module-V</u>	Radioactive Pollution & Solid Waste Management: Radioactive pollutant: units of radiation and instruments for their measurements, types of radioactive pollutants and risk factor associated with these radiations Radioactive waste and their disposal, accidental leakage of radiation from nuclear reactors (discuss Chernobyl and Fukushima) Solid waste management different types of solid waste, composting, biological methods of detoxification of hazardous waste Onsite handling and composting, integrated solid waste management,	05
	Total	42
Text	 Miller, T. G. Jr., <i>Environmental Science</i>, Wadsworth Publishing House, Masters, G.M, <i>Introduction to Environmental Engineering</i>. 	USA.