INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

B.Tech. Course Structure for 2021 - 2025 Batch

Mechatronics Engineering (MEA)

Course	Course name	L	т	Р	с	Year	Semester	Semester
Code								total credit
MA101	Engineering Mathematics – I	3	1	0	4			
PH101	Engineering Physics	3	0	0	3			
EC101	Electrical Sciences	3	0	0	3			
CS101	Computer Programming	3	0	0	3	1	1	23
HS101	Professional Communication	2	0	0	2	-	-	20
ME102	Engineering Graphics	2	0	3	4			
EC112	Electrical Sciences Lab	0	0	3	2			
CS110	Computer Programming Lab	0	0	3	2			
MA102	Engineering Mathematics – II	3	1	0	4			
CS102	Data Structures and Algorithms	3	0	0	3			
EC102	Digital Design	3	0	0	3			
EC104	Semiconductor Devices and Circuits	3	0	0	3			
ME101	Engineering Mechanics	3	1	0	4	1	2	23
CS112	Data Structure and Algorithm Lab	0	0	3	2			
EC113	Digital Design Lab	0	0	3	2			
EC114	Semiconductor Devices and Circuits Lab	0	0	3	2			
Society Aca	demia Industry Internship							
MA201	Engineering Mathematics III	3	1	0	4			
ME201	Solid Mechanics	3	0	2	4			
HS201	Management Concepts and Technology	2	0	0	2			
CS203	Object Oriented Programming	3	0	0	3	C	2	25
ME202	Thermodynamics	3	0	0	3	2	3	25
ME203	Electrical Machine	3	0	2	4			
CS211	Object Oriented Programming Lab	0	0	3	2			
ME211	Mechanical Workshop	0	0	3	2			
SAI-I	Society Academia Industry Internship - I	0	0	0	1			
EC203	Analog Electronics	3	0	0	3			
MA203	Probability and Statistics	3	1	0	4			
ME204	Design of Machine Elements	3	0	0	3			
ME205	Kinematics of Machines	3	0	0	3	2	4	25
ME206	Manufacturing Science	3	0	2	4			
ME207	Fluid Mechanics	3	1	0	4			
EC215	Analog Electronics LAB	0	0	3	2			
ME212	Simulation Lab	0	0	3	2			
Society Aca	demia Industry Internship		-	۱ <u> </u>	-			

Course Code	Course name	L	т	Ρ	с	Year	Semester	semester total credit
EC301	Digital Signal Processing	3	0	0	3			
EC302	Control Systems	3	1	0	4			
ME301	Dynamics of Machinery	3	0	0	3			
ME302	Sensors and Actuators	3	0	0	3			
CS303	Artificial Intelligence	3	0	2	4	3	5	25
EC304	IOT and Embedded System	3	0	0	3			
EC311	Digital Signal Processing Lab	0	0	3	2			
EC312	IOT and Embedded System LAB	0	0	3	2			
SAI-II	Society Academia Industry Internship – II	0	0	0	1			
ME303	Mechatronics and Automation	3	0	0	3			
ME32X	Elective-I	3	1	0	4		6	21
ME33X	Elective-II	3	0	0	3			
ME306	Environmental Science and Green Technology	2	0	0	2			
CS307	Machine Learning	3	0	0	3	3		
ME311	Mechatronics LAB	0	0	3	2			
ME312	Sensors and Control LAB	0	0	3	2			
CS314	Machine Learning LAB	0	0	3	2			
Society Acad	emia Industry Internship Seminar							
HS401	Professional Ethics for Engineers	2	0	0	2			
ME42X	Elective – III	3	1	0	4			
ME42X	Robotics	3	0	0	3			
XX4XX	Open Elective	3	1	0	4	1	7	22
HS45X	Foreign Language	0	0	2	2	4	7	22
ME411	Robotics Lab	0	0	3	2			
ME491	Minor Project	0	0	0	4			
SAI-III	Society Academia Industry Internship-III	0	0	0	1			
ME492	BTech/Research/Industry Project	3	0	0	16	4	8	16

Total Credit: 180

	Elective I								
Semester	Area	Subject							
VI	Mechatronics(Mechanical)	Industrial Engineering, CAD/CAM							
VI	Computation	Computational Intelligence, FEM							
VI	Mechatronics (Electrical)	Electric Hybrid vehicle/ Advance Electrical Machine Design							

Elective II

Semester	Area	Subject
VI	Mechatronics(Mechanical)	Micro-manufacturing,
		Introduction to Composite
		Materials
VI	Computation	Scientific Computation,
		Optimization methods in
		Engineering
VI	Mechatronics (Electrical)	MEMS and NEMS, Power
		Electronics

Elective III

Semester	Area	Subject						
VII	Mechatronics (Mechanical)	Mechanical Vibration,						
		Computer Integrated						
		Manufacturing						
VII	Computation	Introduction to Data Science,						
		Reinforcement Learning						
VII	Mechatronics (Electrical)	Electro-mechanics and						
		Magnetic Propulsion,						
		Automobile Engineering						

Open Elective

- 1. Quality Control.
- 2. Advanced Robotics.
- 3. Materials Characterizations Methods.
- 4. Physics of Manufacturing.

MEA Course Syllabus First Semester Onwards

Course Code	Course name	L	Т	Р	С	Year	Semester
MA101	Engineering Mathematics I	3	1	0	4	1 st	1 st
Торіс	Conter		No. of Lectures				
Module-I	Matrices and solving system of line method, Elementary Row operations, matrices, Gauss-Jordon method for Determinants, Basic properties of Adjoints, the Determinant method for Cramer's Rule; Vector space, Su independence and dependence, Basis is of a subspace, Intersection, and the of a matrix, Row and column spaces, equations.	Elei findi det r finc ubspa , Dir sum	mentang the rermi ling the nce, nension	ary m nants he in Line on, I	natric verse s; C nvers ear Exter bspa	es, Invertible of a matrix; ofactors and e of a matrix, span, Linear nsion of a bas ces. The rank	09
Module-II	Inner Product Space, Orthogonal proj Orthogonal basis of a Vector Space, O process. Least Square Method; Eige Diagonalization, Similarity Transform	Gram enval	I-Sch	midt	orth	ogonalization	08
Module-III	Co-ordinate of a Vector, Change of Basis; Linear transformation, Kernel, and Range of a linear map, Rank-Nullity Theorem, Matrix of a Linear Transformation; Point set Theory: Real Number system, Open				08		
Module-IV	Differentiability, Rolle's theorem and theorem, L `Hospital rule, Increa Convexity, Second derivative test for Series of real Numbers: Partial Sum S Geometric and Harmonic Series, Abs test, Ratio test, Root test, Cauchy C	l Mea sing max Seque solute Conde	and and r ence, e con ensat	dec nin, I Conv iverg ion t	reasi Point verge ence est;	ing function, of Inflection; ence of series, , Comparison Power series,	09
Module-V	Radius of convergence, Taylor Series, Maclaurin Series.Introduction to Riemann Integration, Integrability, The Integral existence theorem for continuous functions and monotone functions, Elementary properties of integral, Fundamental theorems of Calculus; Improper integral of the first and the second kind, Comparison test, Absolute convergence. Introduction to Beta and Gamma Function; Application of Integration to length, area, volume and surface area of revolution						08
						Total	42
Text	 B S Grewal, J S Grewal, J K I Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. N Wiley India Pvt. Ltd., 2017 						
Reference	 D. Poole, <i>Linear Algebra: A Mod</i> S. R. Ghorpade and B. V. Limaye Springer India, 2006. 						

Course Code	Course name	L	Т	Р	С	Year	Semester
PH101	Engineering Physics	3	1	0	4	1 st	1 st
Topic	Conter	No. of Lectures					
Module-I	Laws of thermodynamics- Statement, Discussion and Significance of Zeroth, First and Second law, Isothermal and Adiabatic change & Carnot cycle.						08
Module-II	Concept of Entropy- Clausius inequa of Entropy; Matter Waves, Wave an Uncertainty Principle						08

Module-III	Wave Function, its Interpretation and Normalization, Superposition of Amplitudes, Dynamical Variables as Operators, Expectation Values, Schrodinger Equation and its Simple Applications like Particle in a Box.	10
Module-IV	Semiconductor materials, insulators, intrinsic and extrinsic semiconductor, Carrier transport in a semiconductor: diffusion current, drift current, mobility, and resistivity. Generation and recombination of carriers in semiconductors.	08
Module-V	Electrons and Holes in semiconductors: Donors and acceptors in the band model, electron effective mass, Density of states, Thermal equilibrium, Fermi-Dirac distribution function for electrons and holes, Fermi energy. Equilibrium distribution of electrons & holes.	08
	Total	42
	1. Dattu R Joshi, Engineering Physics, Tata McGraw Hill Education,	
Text	2. D K Bhattacharya, Poonam Tandon, <i>Engineering Physics</i> , Oxfor India; 2017.	d University Press
Reference	 Arthur Beiser, Shobhit Mahajan, S Rai Choudhury, <i>Concepts of Mo</i> McGraw Hill Education, 7th edition, 2017. David J Griffiths, <i>Introduction to Quantum Mechanics</i>, Pearson Services Pvt. Ltd, 2nd edition, 2018. 	,

Course Code	Course name	L	Т	Р	С	Year	Semester
EC101	Electrical Science	3	0	0	3	1 st	1 st
resistive circu capacitors and	tive: The main objective of this cours not its with independent sources, two te analysis of magnetic circuits, analysis antities and determining the power in th	ermir of s	al (ingle	elem pha	ent ise A	relationships	for inductors and
Торіс	Conten						No. of Lectures
Module-I	Basic components and electric circuits and branches, Kirchhoff's current dependent and independent sources Basic nodal and mesh analysis; super-	law, , vo	Kir ltage	chho and	ff's curi	voltage law,	04
Module-II	Network theorems: linearity and superposition, source transformations, Thevenin and Norton equivalent circuits, maximum power transfer; RL and RC circuits: source-free RL circuit, source-free RC circuit, unit-step function, driven RL circuits, natural and forced response, driven RC circuits					10	
Module-III	RLC circuit: source-free parallel cir circuit, critical damping, underdamped free series RLC circuit, complete resp	ed pa	aralle	el RL	C ci	rcuit, source-	09
Module-IV	power; Polyphase circuits: polyphase systems, single-phase three-wire systems, three-phase Y-Y connection, delta connection, power					10	
Module-V	measurement in three-phase systemsMagnetically coupled circuits: mutual inductance, energy considerations, Transformers, Principle of transformers and rotating machine, D. C machine: D. C. Motor and generator; Two-port networks: one-port networks, admittance parameters, impedance parameters, hybrid parameters, transmission parameters.					09	
Text	 W. H. Hayt, J. E. Kemmerly, S. McGraw-Hill Publishing Compar E. Hughes, J. Hiley, I. McKen <i>Technology</i>, Pearson Education In 	ny Li nzie- ndia,	miteo Smit 10 th	d, 8 th h, K editie	editi . Br on, 2	on,2012. own, <i>Electrice</i> 010.	al And Electronic
Reference	1. Bruce Carlson, Circuits: Engin Circuits, Thomson Asia Pvt. Ltd.						of Linear Electric

Course Code	Course name	L	Т	Р	С	Year	Semester
CS101	Computer Programming	3	0	0	3	1 st	1 st
Course objec	Course objective: This course aims to teach everyone the basics of programming of						
	Language. We cover the basics of how	w on	e cor	nstruc	cts a	program from	a series of simple
instructions in							
Торіс	Conter						No. of Lectures
Module-I	Introduction to Computing: Historica the von Neumann architecture. Proble Memory, Variables, Values, Instr language, High level language, Co Systems.	ms, l uctio	Pseuc ons,	lo co Prog	de, ar gram	nd Flowchart. s. Assembly	08
Module-II	Introduction to C: The C language. Phases of developing a running computer program in C; Data Concepts in C: Constants, Variables, Expressions Operators and operator precedence in C. Managing input					08	
Module-III	Data Types in C: Different basic data types and their sizes. One- dimensional Arrays: Declaration and initialization, Two-dimensional				09		
Module-IV	Modular Programming and Examp prototype declaration, Function def arguments to a function (by value, by Recursive function calls, Tail recurs problems: Selection sort, Insertion problems: Linear search and binary formulations; More Data Types in dereferencing pointer variables. Point through pointers. Pointer types, Point	inition y references sort. sort. sear n Canton ter an	on. H erence Tree Sort ch. F : Po rithm	Funct e). S e of t ting Recur inters etic.	ion cope recur in a sive s: D	call: Passing of variables. rsion. Sorting rrays. Search and iterative eclaring and	10
Module-V	Structures in C: Motivation, examples, declaration, and use. Operations on structures. Passing structures as function arguments. Type defining structures. Self-referential structures, Linked lists with examples. File operations in C: Input, output, and error streams. Opening, closing, and reading from files. Searching through files using functions such as fseek(), ftell(), and rewind(). Programming for command line arguments.					07	
TT (0	Total	42
Text	1. Bryon Gottfried, <i>Programming w</i>						
Reference	 Kernighan and Ritchie, <i>The C Pro</i> H. M. Deitel, P. J. Deitel, <i>C: How</i> 	0		0	0	0	

Course Code	Course name	L	Т	Р	С	Year	Semester
HS101	Professional Communication	2	0	0	2	1 st	1 st
Topic	Conter	nts					No. of Lectures
Module-I	Communication Fundamentals: Us Communication	Communication Fundamentals: Using Verbal and Non- verbal Communication					
Module-II	Interviewing Principles And Skills: Fundamental principles of interviewing, Success in an interview, Types of Interviews, Important Non-verbal aspects						04
Module-III	GROUP DISCUSSIONS: Methodology of GD, Improving Group performance						04
Module-IV	Professional Writing: Kinds of busin Resume Writing, Report Writing, Pro etiquette, Notices, Agenda and Minut	oposa					05

Module-V	Delivering Professional Presentations: Elements of effective English, Effective paragraphs, The power of reading, Punctuation and Capitalization	04					
	20						
Text	1. Business Correspondence and Report Writing - R. C. Sharma 2. Business Communication - M. Balasubramanyam 3. Essentials of Business Communication - R. Pal and Kolahalli						
	 Business Communication and Report Writing - Sharma, Mohan Lesikar's Basic Business Communication – Lesikar 						

Course Code	Course name	L	Т	Р	C	Year	Semester
ME101	Engineering Graphics	2	0	3	4	1^{st}	1st
 To describe To under graphics 	rstand the drawing importance in ribe the 3D objects into different erstand the application of comp	2D view oany star	s. ndard				n engineerin
	Content	s					No. of Lectures
Module 1							L
and computer-ai Conventions of 2 of drawing sheet Scales: Requirer Geometrical co	nents, Plane scale, Diagonal and nstruction and curves: Definit s of drawing Ellipse, parabola	ts and th sheets, I vernier s ions of	eir us Borde scales ellips	ses. er lind s. se, Pa	es, Tit arabol	le block, Folding a and hyperbola,	6
Involutes, Spiral Orthographic p Projection plane Projection of po quadrant. Projection of st perpendicular to	ruction of cycloids, Epicycloids & s and Helices and their construct projection: Introduction, Method s and four quadrants, First and th pints: Introduction, A point is sit raight lines: Introduction, Line one of the planes, Line inclined of the planes, True lengths and it	ion. Is of pro ird angle uated in parallel t I to one	jectio projethe fi o one and p	on, O ectio rst, s e or b perpe	ns. econd ooth of	, third and fourth f the planes, Line lar to other, Line	6
Module 3							
Projection of pla one reference pla	anes: Introduction, Types of pla anes parallel to one of the referen anes and perpendicular to other, l es and plane by auxiliary planes.	ce planes	s, Pro	jectio	on of j	planes inclined to	6

D I I I		
0	solids: Introduction, Types of solids, Projections of solids in simple positions,	
Projections of	solids with axes inclined to one of the reference planes and parallel to other,	
Projections of	solids with axes inclined to both of the planes, Projection of spheres.	
Module 4		
Projection of	sectioned solids: Introduction, Conventions in sectional view drawings, True	6
shape of a sect	tion, Sections of prisms, pyramids, cylinders, cones and spheres.	
Intersection of	of solids: Introduction, Classification, Line of intersection, Line/generator	
method and s	ection plane method, Intersection of two prisms, two cylinders, cone and	
cylinder, pyrai	nid and cylinder, pyramid and prism, etc.	
	of surfaces: Introduction, Method of development, Development of lateral	
	ht solids, Development of transition pieces, Development of spheres.	
Module 5		
centre method different solids Perspective p	roduction, Isometric scale, Box method, Coordinate or offset method, Four , Isometric projection of arcs, Construction of isometric projection of s. rojection: Introduction, Terminology and Principles of perspective ethods of perspective projection of various objects.	4
	Total	30
Text	1. N. D. Bhatt and V. M. Panchal, "Engineering Drawing", 53rd Ed	l., Charato
	Publishing House,2001	Education
	2. M. B. Shah and B. C. Rana, "Engineering Drawing", 2nd Ed., Pearson 2009	Education
Reference	1) T. E. French, C. J. Vierck and R. J. Foster, "Graphic Science and Desig	gn", 4th
	Ed., McGraw Hill, 1984.	
	 W. J. Luzadder and J M Duff, "Fundamentals of Engineering Drawing" PHI,1995 	", 11th Ed

Course Code	Course name	L	Т	Р	С	Year	Semester	
MA102	Engineering Mathematics II	3	1	0	4	1 st	2^{nd}	
Торіс	Conter	nts					No. of Lectures	
Module-I	integration; Functions of several derivatives, directional derivatives,	Vector functions of one variable – continuity, differentiation and integration; Functions of several variables - continuity, partial derivatives, directional derivatives, gradient, differentiability, chain rule; tangent planes and normal; Concavity-Convexity, Maxima and minima Saddle Pont Lagrange multiplier method						
Module-II	Repeated and Multiple integrals with applications to volume, surface area, Moments of Inertia, change of variables, Vector Fields, Line and Surface Integrals.						08	
Module-III	Green's, Gauss' and Stokes' theorems differential equations - exact different Bernoulli equations, existence and un	tial e	quatio	ons, i	nteg	rating factors,	08	
Module-IV	Higher-order linear differential equations, solutions of homogeneous and non-homogeneous equations, method of variation of parameters. Series solutions of linear differential equations. Legendre equation and Legendre polynomials. Bessel equation and Bessel functions of first and second kinds.						09	
Module-V	Systems of first-order equations, two-dimensional linear autonomous system, phase plane, critical points, stability.						08	
						Total	42	

Text	 B S Grewal, J S Grewal, J K I Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. N Wiley India Pvt. Ltd., 2017 			U		0 0	
Reference	 D. Poole, <i>Linear Algebra: A Mod</i> S. R. Ghorpade and B. V. Limaye Springer India, 2006. 						-
Course Code	Course name	L	Т	Р	С	Year	Semester
MA102	Engineering Mathematics II	3	1	0	4	1 st	2^{nd}
Торіс	Conter	nts					No. of Lectures
Module-I	Vector functions of one variable – integration; Functions of several derivatives, directional derivatives, rule; tangent planes and normal; Con minima, Saddle Pont, Lagrange multi	varia gradi ncavi	ibles ent, ty-C	- c diffe onve	ontii renti	nuity, partial ability, chain	09
Module-II	Repeated and Multiple integrals with applications to volume, surface area, Moments of Inertia, change of variables, Vector Fields, Line and Surface Integrals.						08
Module-III	Green's, Gauss' and Stokes' theorems differential equations - exact different Bernoulli equations, existence and un	ial eo	quatio	ons, i	nteg	rating factors,	08
Module-IV	Higher-order linear differential equations, solutions of homogeneous and non-homogeneous equations, method of variation of parameters. Series solutions of linear differential equations. Legendre equation and Legendre polynomials. Bessel equation and Bessel functions of first and second kinds.09						09
Module-V	Systems of first-order equations, two system, phase plane, critical points, st			onal l	inea	autonomous	08
	•					Total	42
Text	 B S Grewal, J S Grewal, J K I Publishers, 44th edition, 2017. E. Kreyszig, H. Kreyszig, E. J. N Wiley India Pvt. Ltd., 2017 	lormi	nton	, Adv	ance	d Engineering	Mathematics, 10 th ,
Reference	 Wiley India Pvt. Ltd., 2017 3. D. Poole, <i>Linear Algebra: A Modern Introduction</i>, 4th edition, Brooks Cole, 2014. 4. S. R. Ghorpade and B. V. Limaye, <i>A Course in Calculus and Real Analysis</i>, 1st edition, Springer India, 2006. 						

Course Code	Course Name	L	Τ	Р	С	Year	Semester
CS102	Data Structures and Algorithms	3	0	0	3	1^{st}	2^{nd}
Course Objective	: A good algorithm usually comes togethe	er wi	th a	set o	f goo	od data struct	ures that allow
e	nanipulate the data efficiently. In this cour		stude	ents	will	get to know v	various data
structures that are	used in various computational problems.						
Topic							Hour
Module I	Performance of algorithms: space and tin	ne c	omp	lexit	y, as	ymptotics,	7
	lower and upper bounds.						
Module II	Ile II Fundamental Data structures: arrays, linked lists, matrices, stacks,						7
	queues, binary trees, tree traversals.						
	Algorithms for sorting and searching: lir				-		_
Module III	insertion-sort, selection sort, bubble sort	, qui	ckso	rt, n	nerge	esort,	7
	heapsort; Priority Queues: lists, heaps.						
Module IV	Hashing: separate chaining, linear probin		uadr	atic	prob	ing;	6
11100001011	Search Trees: binary search trees, B-tree						С С
Module V	Graphs: Data Structures for Graphs, Bre	adth	Firs	t Sea	arch,	Depth First	8
	Search.						0
						Total	35
Text	1. Data Structures with C; Seymour Lips	schut	tz,;	lst, l	McG	raw Hill Edu	cation (India)
Τεχί	Pvt. Limited; 2011.						

	2. Data Structures Using C, Aaron M. Tenenbaum, Yedidyah Langsam, and Moshe J. Augenstein, Prentice-Hall, Inc., 2008
Reference	 Fundamentals of Data Structures in C; Ellis Horowitz, Sartaj Sahni, Susan Anderson; 2nd, Universities Press (India) Private Limited; 2017. Introduction to Algorithms; Thomas H Cormen, Charles E Leiserson, Ronald L Rivest; 3rd, PHI Learning Private Limited; 2018.

Course Code	Course name	L	Т	Р	С	Year	Semester
EC102	Digital Design	3	0	0	3	1 st	2^{nd}
Course objective: The main objective of this course is to introduce the number system							0
system abstractions such as digital representations of information, logic gates, combinat circuits, Boolean algebra, state elements and finite state machine (FSMs).							onal and sequential
	Conte		acmi	le (r.	51015)		No. of Lectures
Topic			umh	20 01/	tom	Dinamy octal	No. of Lectures
Module-I	Number Systems and Codes, Positional number system, Binary, octal and hexadecimal number systems; Methods of base conversions; Binary, octal and hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point numbers; Binary coded decimal codes; Gray codes; Error detection and correction codes - parity				06		
Module-II	Combinatorial Logic Systems: De table; Basic logic operation and lo Switching Functions: Basic postula Boolean algebra; Standard represe and POS forms; Simplification of s Quine-McCluskey tabular methods; circuits	check codes and Hamming code Combinatorial Logic Systems: Definition and specification; Truth table; Basic logic operation and logic gates; Boolean Algebra and Switching Functions: Basic postulates and fundamental theorems of Boolean algebra; Standard representation of logic functions - SOP and POS forms; Simplification of switching functions - K-map and Quine-McCluskey tabular methods; Synthesis of combinational logic circuits					10
Module-III	Logic Gates, Two-level realizatio AND, NAND-NAND and NOR- gates, Multi-bit adder, Multiplexer Programmable ALU; Multiplexer Combinational circuit design using	NOF ers, I -base	t stru DE-m ed re	uctur ultip aliza	es; l lexei ition	Multifunction rs, Decoders, of K-maps;	09
Module-IV	Sequential Logic systems: Latches and races; Analysis of state machin flops; Synchronous and Asynchronous generator using flip-flops; Design of assignment, transition/excitation equations, logic realization; Design	and es us ous co of stat tabl	Flip ing D ounte e ma e, e	-flop flip rs; R chine excita	s, Tin -flop egiste es-sta	ming hazards s and JK flip- ers; Sequence tte table, state	10
Module-V	Memory: Read-only memory, r DRAM; TTL, MOS, interfacing ROM, PAL, and PLA.	ead/v	vrite	mei			07
	•					Total	42
Text	 M. Morris Mano, Digital L 11thedition, 2009. R. Tokheim, Digital Electronic, edition, 2017. 	_			-	_	
Reference	 R. J. Tocci, N. S. Wisdmer <i>Applications</i>, Pearson Educatio John F Wakerly, <i>Digital Desig</i> edition, 2008. 	n, 10	th edi	tion,	2011	l.	-

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC103	Semiconductor Devices & Circuits	3	0	0	3	1 st	2 nd	
Course objec	conductor mate	rials and transport						
	mechanism, semiconductor diodes, bipolar transistors, field effect devices and							
	e course objectives are to:							
	students to the physics of semiconductor							
	udents the insight useful for understand		new s	emic	condu	ictor devices ai		
Торіс	Conter			1	•		No. of Lectures	
Module-I	Introduction of semiconductors, equil in semiconductors; Bond model semiconductors, Density of state, Fe Carrier transport in semiconduct conductivity; Excess carrier, metho inside extrinsic semiconductors. Dop	and ermi- ors, od of	band dirac Mol gen	d m dist bilty, erati	odel ribut res ng e	of intrinsic ion function; sistivity and xcess carrier	08	
Module-II	inside extrinsic semiconductors. Doping and diffusion process.P-N Junction: Simplified device structure and physical operation of diode; depletion region, forward and reverse-bias, depletion and diffusion capacitances, switching characteristics; breakdown mechanisms; Zener diode, Tunnel diode; Diode Applications: Half Wave and Full Wave Rectifier, Clippers and Clampers, and Zener Regulators						09	
Module-III	Simplified device structure and pl characteristics of BJT, carrier distrib secondary effects; SPICE model. Breakdown of the junction with the ne β -I _C characteristics curve, variation equivalent circuit, BJT Amplifiers: T Common base, Common emitter and	utior Meta on-in n of ransi	i; cui il-sen npact α stor (rent nicor and with Conf	gain iduct impa I _c ; igura	, transit time, or junctions, act ionization, Small signal	08	
Module-IV	MOS structure, Energy band diagram band voltage, Surface accumulation condition and threshold voltage, MOS Characteristics.	ns, F 1, su	lat-ba rface	and c dep	condi oletio	n, Threshold	08	
Module-V	Introduction to Field effect t characteristics of Junction Field effe channel JFET characteristics; MOS depletion type of MOSFET, Basic O channel and P-channel MOSFET characteristics	ct tra SFET pera	S: E tion a	tors; Inhan and (N-cł ceme	ent type and acteristics; N-	09	
						Total	42	
Text	 R. F. Pierret, <i>Semiconductor De</i> 2006. B. G. Streetman and S. K. Banerje 7th edition, 2015. A. S. Sedra, K. C. Smith and A university Press India, Internation 	e, <i>Sc</i> .	olid Si Char	<i>tate I</i> ndork	Electi xar, N	ronic Devices, Microelectronic	Pearson Education,	
Reference	1. J. Singh, <i>Semiconductor Devices</i> edition, 2001.	- <i>Ba</i> .	sic P	rincij	ples,	John Wiley &	Sons Inc., 1 st	

Course Code	Course name	L	Т	Р	C	Year	Semester
ME102	Engineering Mechanics	3	1	0	4	1 st	2 nd
Course objectiv	e:	I	1	1	I		L
the effects of2. This capacit principles of3. The ability to	force and motion while c y requires more than a mechanics.	arryi me igura	ing of re ki	ut the nowle s in te	e crea edge erms	tive desig of the p of real m	velop the capacity to predict gn functions of engineering. ohysical and mathematical aterials, actual constraints, nes and structures.
	Contents						No. of Lectures
Module : 1							
Equivalent force equilibrium equa	systems; free-body diag tions;	gram	s; de	grees	of f	reedom;	10
Module : 2							
Analysis of dete friction.	erminate trusses and fran	nes;	prop	ertie	s of	surfaces	8
Module : 3							
Centroids and co principal	entres of gravity, Mome	nt of	f Ine	rtia;	Virtu	al work	10
Module : 4							
1	motion; work-energy alized coordinates; Lagra	and angia		•		mentum	10
Module : 5							
	and kinetics of rigid bo mentum principles; sing			-			10
						Total	48
Text	PHI, 2002.	. Joh	nstor	1, "V	ector	Mechani	d Dynamics", 4th Ed., cs for Engineers, Vol I – aw Hill, 2000.
Reference	1. S. Timoshenko, D.I. Mechanics", Paper	H. Yo back nd L.	oung –1 Ju G. K	, J.V. 11 20 Craigo	Rao 17. e, "Ei	and S. Pa	at, "Engineering g Mechanics, Vol I -

Course Code	Course name	L	Т	Р	С	Year	Semester
MA201	Engineering Mathematics III	3	1	0	4	2 nd	3 rd
Торіс	Conter	nts					No. of Lectures
Module-I	Complex numbers and elementary plimits, continuity and differentiation Analytic and harmonic functions.	n. C	Cauch	y-Ri	emar	nn equations.	08
Module-II	Elementary functions. Anti-derivativ Cauchy-Goursat Theorem. Cauchy Theorem. Liouville's Theorem, Funda Maximum Modulus Principle. Singularities and Laurent series.	's in amen	ntegr tal T	al fo heore	ormu em o	la, Morera's f Algebra and	09
Module-III	Cauchy's Residue Theorem and applications. Mobius transformations; Partial Differential Equations: First order PDEs; solutions of linear and nonlinear first order PDEs; classification of second-order PDEs.						08
Module-IV	Method of characteristics Iin PDI problems (Dirichlet and Neumann typ conduction equation, Laplace's equat separation of variables; initial bounda	e) in ions	volvi and s	ng w soluti	ave of a state of a st	equation, heat	08
Module-V	Solution of PDE by Laplace trar integrals; Fourier transforms, sine an PDE by Fourier transform.						10
						Total	43
Text	1. B S Grewal, J S Grewal, J K Dhanoa, <i>Higher Engineering Mathematics</i> , Khanna Publishers 44 th edition 2017						
Reference	 Ian N Sneddon, <i>Elements of Part</i> John H Mathews, Russell W <i>Engineering</i>, Jones and Bartlett I James Ward Brown, Ruel V Ch McGraw Hill Education, 8th edition 	How ndia urch	ell, (Pvt.L ill, (Comp .td, 6	olex th edi	Ananlysis for tion, 2011.	Mathematics and

Course Code	Course name	L	Т	Р	C	Year	Semester
ME201	Solid Mechanics	3	0	2	4	2^{nd}	3

Course objective:

1) To understand the basic concepts of the stresses and strains for different materials and strength of structural elements.

2) To know the development of internal forces and resistance mechanism for one dimensional and two dimensional structural elements.

3) To analyse and understand different internal forces and stresses induced due to representative loads on structural elements.

4) To analyse and understand principal stresses due to the combination of two dimensional stresses on an element and failure mechanisms in materials.

5) To evaluate the behavior of torsional members, columns and struts.

Topic Contents	No. of Lectures
Module 1	
Introduction, Definition and concept and of stress and strain. Hooke's law	, Stress- 8
Strain diagrams for ferrous and non-ferrous materials, factor of safety, Elong	ation of
tapering bars of circular and rectangular cross sections, Elongation due	e to self-
weight.Compound bars, Temperature stresses, Compound section subjection	ected to
temperature stresses, state of simple shear, Elastic constants and their relat	tionship
Module 2	
Stress at a point, analysis of deformation and definition of strain components, J	principal 8
stresses and strains, Mohr's circle representation. Constitutive relations.	
Module 3	

Material	properties for isotropic materials and their relations, 3d stress – strain,	8
	of failures for isotropic materials.	
Module 4		
Shear For	ce and Bending Moment diagrams. Axially loaded members. Stresses due to	8
bending:	pure Bending, transverse shear.	
Module 5		
Torsion o	f circular shafts, Combined stresses due to bending, torsion and axially	8
loading.D	eflections due to bending, Strain energy due to axial, torsion, bending and	
transverse	shear. Castigliano's theorems. Thin cylinders and spherical vessels,	
columns.		
	Total	40
	I	
Text	1) E. P. Popov, "Engineering Mechanics of Solids", Prentice Hall, 1998.	
	2) F. P. Beer, E. R. Johnston (Jr.) and J.T. DeWolf, "Mechanics of Material	ls", Tata McGraw
	Hill, 2005.	
Referen	1) S. H. Crandall, N. C. Dahl, and T. J. Lardner, "An Introduction to The Mec	hanics of Solids",
ce	2nd Ed., Tata McGraw Hill, 2008.	
	2) S. P. Timoshenko, "Strength of Materials, Vols. 1 & 2", CBS Publishers,	1986.

Course Code	Course name	L	Т	Р	С	Year	Semester
HS201	Management Concepts and Technology	2	0	0	2	2^{nd}	3 rd
Topic	Conter	nts					No. of Lectures
Module-I	Principles of Management: Concept Management, Planning and its N organizational Structure, Authority re	ature	e &(Drgai			04
Module-II	Delegation of Authority. Staffing: Leadership Communication. Directin Coordinating; Principles of Economi consumption, production, exchange, o	05					
Module-III	Demand analysis: Concept, kind of demand, change in demand, law of demand; Utility analysis: Marginal, total, consumer surplus, consumer equilibrium; Production analysis: Law of supply, different factors of production, law of returns, economies of scale.						06
Module-IV	Cost analysis: Cost concept, impor classification; Pricing analysis: Differ equilibrium in different markets - per	rent	kinds	of r	narke	ets, pricing &	05
Module-V	profit. The international economics: C structural adjustment programme	Income distribution: Briefing them about rent, wages, interest and profit. The international economics: Changing scenario, globalization, structural adjustment programme, stabilization policy, the multinational corporation. IBRD, IMF, GATT, WTO, ITO, IDA, IFC,					
						Total	25
Text	 Business Organisation& Manager Essentials of Management - Haro An introduction to Positive Econo Modern Microeconomics; A. Kou Managerial Economics - Analysis Business Economics; ManabAdh 	ld K omic itsoy s, Pro	oontz s; Lij ianni oblen	z, He osey. ls.	ingW		a.

Course Code	Course name	L	Т	Р	С	Year	Semester
CS201	Object Oriented Programming	3	0	0	3	2^{nd}	3 rd
	e: The course is designed to provide s						
	rough C++ and to enhance the prog						
-	be done in labs. The course also aims	-				-	-
	Programming through C++ so that th		ake t	heir	own	Applications/I	
Торіс	Conte						No. of Lectures
Module-I	Principles of OOPs, Basics of C Concepts of OOP, Benefits of OOF of OOP. C++ program basics, dat resolution, type cast operators, precedence. Main function, functio inline functions, default argument overloading, friend and virtual func	08					
Module-II	overloading, friend and virtual functions, maths library functions. Classes, objects, constructors and destructors – C structures revisited, specifying a class, defining a member function, private member functions, memory allocation for objects, static data members and member functions, array of objects, objects as function arguments, friendly functions, returning objects, pointers to members, constructors, Parametrized constructors, Multiple constructors, Copy constructor, Destructors.						08
Module-III	Operator overloading, inheritance, virtual functions and polymorphism – Overloading unary operators, overloading binary operators, rules for overloading operators, type conversions. Derived classes, single inheritance, multilevel inheritance, multiple inheritance, hierarchical inheritance, hybrid inheritance, virtual base classes, abstract classes, nesting of classes. Pointers, pointer to objects, this pointer, pointer to derived classes, virtual functions, pure						09
Module-IV	virtual functions. Console I/O operations, working with files and templates – C++ streams and stream classes, unformatted I/O operations, formatted console I/O operations, managing output with manipulators. Classes for file stream operations, opening/closing of file, file pointers and their manipulation, error handling during file operation, command line arguments. Class templates, class template with multiple parameters, function templates, overloading template functions, member function templates, non-type template arguments.						09
Module-V	Exception handling and Standard exception handling, exception h mechanism, catching mechanism, r exception. Components of STL, C Application of Container classes, Fu	andli ethrc ontai	ing wing ners,	mech g exc Alg	anisi eptio orith	m, throwing n, specifying ms, Iterators,	08
	1 E Pologumusomy Object Origin	tod T			inc .	Total	42 MaGrow Hill
Text	 E. Balagurusamy, <i>Object Orien</i> Herbert Schildt, C++: <i>The Con</i> 		0		0		a McGraw Hill.
Reference		-	v				Pearson Education,

Course Code	Course name	L	Т	Р	С	Year	Semester
ME202	Thermodynamics	3	0	0	3	2^{nd}	3 rd
 To know Identify a 	e: familiar with thermodynamic syster the basic laws of thermodynamics, different types of properties ex. exter op understanding of entropy	zerotl	h law	, firs	t law	, second law	
	Contents						No. of Lectures

Thermodynamic s	systems, States, processes, Zeroth law, work and heat,	6
Module : 2		
thermodynamics, property, modes of equation(SFEE), reservoir, Direct work to heat in coefficients of Thermodynamics	nts, equivalence of heat and work. Statement of the First law of extension of the First law to non - cyclic processes, energy, energy as a of energy, Extension of the First law to control volume; steady flow energy important applications.limitations of first law of thermodynamics, Thermal heat engine; schematic representation and efficiency. Devices converting a thermodynamic cycle; reversed heat engine, schematic representation, performance. Kelvin - Planck statement of the Second law of ; PMM I and PMM II, Clausius statement of Second law of , Equivalence of the two statements; Carnot cycle, Carnot principles.	8
Module : 3		
a reversible heat reversible heat e external reversibil	eversible process, reversible heat engine, importance and superiority of engine and irreversible processes; factors that make a process irreversible, ngines. Unresisted expansion, remarks on Carnot's engine, internal and lity, Clasius inequality, Statement- proof, Entropy- definition, a property, by, entropy as a quantitative test for irreversibility, principle of increase	8
Module : 4		
unavailable energ	ilability (Exergy), Unavailable energy, Relation between increase in gy and increase in entropy. Maximum work, maximum useful work d control volume, irreversibility, second law efficiency	8
Module : 5		
P-T and P-V diag mixture of satura substance with wa (quality), T-S an	grams, triple point and critical points. Sub-cooled liquid, saturated liquid, ted liquid and vapor, saturated vapor and superheated vapor states of pure ater as example. Enthalpy of change of phase (Latent heat). Dryness fraction d H-S diagrams, representation of various processes on these diagrams. its use. Properties of mixtures of ideal gases, Thermodynamic cycles - Otto, oule	8
	Total	38
Text	 R. E. Sonntag, C. Borgnakke and G. J. V. Wylen, "Fundamentals of Thermodynamics", 6th Ed., John Wiley, 2003. P. K. Nag, "Engineering Thermodynamics", 5th Ed., Tata McGraw Hill 2013. 	
Reference	 Y. A. Cengel and M. A. Boles, "Thermodynamics, An Engineering Appr 4th Ed., Tata McGraw Hill, 2003. G. F. C. Rogers and Y. R. Mayhew, "Engineering Thermodynamics Wor Heat Transfer", 4th Ed., Pearson 2003. 	

Course Code	Course name	L	Т	Р	С	Year	Semester
ME203	Electrical Machine	3	0	2	4	2^{nd}	3
Course objectiv	e:						
	ep exposition of the theory of						
	c machines. The students wou	uld be able to	o unc	lersta	and a	nd implement fur	ndamentals of
rotating electrica	ll machines.						
	Conte	ents		-			No. of
							Lectures
Module : 1							1
Gauss's law for	electric fields and magnetic fi	elds, Farada	y's la	ıw, T	he A	mpere-	9
Maxwell law, M	lagnetic Circuits, Magnetic M	laterials and	their	prop	oertie	s, Magnetically	
induced EMF an	d Force, AC Operation of Ma	gnetic Circu	its, F	Iyste	resis	and Eddy-	
Current Losses, 1	Permanent Magnets, Applicat	tion of Perma	anent	Mag	gnet I	Materials,	
Energy in Magne	etic System, Field Energy and	l Mechanical	Ele	ctror	necha	anical Systems	
	Excited Magnetic Field Syste					-	
Permanent Magr	nets, Energy Conversion via E	Electric Field	. Dyr	nami	cal E	quations of	
Module : 2						1	
	ansformation Construction an	d Practical C	Consi	derat	ions,	Transformer on	8
No-Load, Ideal	Transformer, Real Transfor	mer and Eq	uival	lent	Circu	uit, Transformer	
	mer testing, The per unit syste		•				
	ers, Phase Conversion, Volta				-	-	
-	y Coupled Circuit	8				,	
Module : 3	y coupled chedit						
	hines, Generated EMF, MMF	of distribute	d W	indin	g. Ro	otating Magnetic	8
•	n round rotor machine, Ope				•	0 0	
-	ating Machines, Losses and					• •	
e	e and Load, AC Winding, DC	•			•		
Module : 4	, una Loua, me ((maing, De			iiui ii			
	Introduction, EMF and To	rque, Circui	t M	odel.	Arr	mature reaction,	8
	Aethods of Excitation, Mag	•					
	of DC Motor/Generator, Star						
	ine dynamics, Permanent Ma	e e			-peec		
Module : 5	inte agnatifies, i crittatione tria						
	ne: Introduction, Flux and M	MF Waves	in In	ducti	on M	Iotor – Principle	8
	evelopment of Circuit Model						
	determine circuit model par						
Classes of squirr	-		2	,, 00	88	8	
clusses of squill						Total	41
						I Utal	71
	1)A Fitzgerald," Electric M	Iachinerv".	McC	Graw	Hill.	2017.	
Text	2)D. P. Kothari and I. J. Na	-					013.
Reference	1) S. Chapman, "Electric	-					
	 D. Fleish, "A Student's 						2017.
	[2] D. MEISH, A Student's	JUILE IO Ma	LA WE	11 S E/	uuau		

Course Code	Course name	L	Т	Р	С	Year	Semester
EC204	Analog Electronics	3	0	0	3	2^{nd}	3 rd

Course objective: The objective of this course is to provide an introduction to Amplifiers using transistors. More particularly,

- 1. To give the idea about fundamental properties of semiconductors.
- 2. To prepare students to perform the analysis of any Analog electronics circuit.
- 3. To empower students to understand the design and working of BJT / FET amplifiers, oscillators and Operational Amplifier.

Topic	Contents	No. of Lectures
Tohic	BJT Amplifiers: Transistor Configuration analysis, Biasing circuit	no. of Lectures
Module-I	by FAmpiniers. Transistor Configuration analysis, blassing clicuit techniques, Locating the Q-points, Fixed bias or Base bias, Stability of the operating point, Stability factor, AC load line, Emitter /feedback bias, Collector feedback bias, Small signal CE amplifier, CC amplifier, h-parameters, Hybrid π model analysis, Frequency response, Feedback amplifiers: negative and positive feedback. Topologies of the feedback amplifiers, Effect of feedback on gain, Input and output impedances, Effect of positive feedback	10
Module-II	FET Amplifiers: Operation, Trans-conductance curve, Biasing of FET, Self-Bias, Voltage divider bias, Current source bias. Compound configuration: Darlington circuit, Cascade Amplifier, Types of Coupling: RC Coupling, Impedance Coupling, Transformer Coupling, Direct Coupling	08
Module-III	Transistorized Audio Power Amplifiers, Difference between Voltage and Power amplifier, Performance quantities, Class A, Class B, Class C power amplifiers. Thermal Runway, Heat Sink, Stages of practical power amplifier. Oscillators: Harmonic Oscillators, RC Phase shift Oscillators, Transistor Phase Shift Oscillator, Colpitts Oscillators and Crystal Oscillator	06
Module-IV	IC Op-Amps and its ideal characteristics, Basic analog circuit using Op-Amps, Miscellaneous circuits and techniques: Capacitance multiplier, Inductance simulator, Non-inverting and Inverting Integrator and Differentiator, Differential amplifiers, Current mirrors, Parameters of Op-Amp, Open loop and Closed loop Op-amp configuration, Voltage Series and Voltage Shunt feedback	08
Module-V	Filters: first and second order low pass and high pass filters, Comparators, Schmitt trigger circuit, Oscillator, Triangular wave generator, Voltage regulator, Emitter follower regulator, current source, Sample and hold circuits, Log and Antilog amplifiers.	08
	Total	42
Text	 B. Razavi, <i>Design of Analog CMOS Integrated Circuits</i>, Tata edition, 2017. A. S. Sedra, K. C. Smith and A. N. Chandorkar, <i>Microelectroni</i> university Press India, International Version 7th edition, 2017. 	
Reference	 R. J. Baker, H W Li, D. E. Boyce, <i>CMOS Circuit design, Layo</i> John Wiley & Sons, 2nd edition, 2004. 	ut and Simulation,

Course Code	Course name	L	Т	Р	С	Year	Semester
MA202	Probability and Statistics	4 th					
Topic	Conter	No. of Lectures					
Module-I	Basic Probability: Sample Space and Probability, equally likely events, i Probability, Expectations; Rando Continuous Probability Distributions Functions.	ndep m	ende Varia	nt ev ables	vents : D	; Conditional Discrete and	08

	-	
Module-II	Distributions:Binomial-Poisson-Geometric-Uniform-Normal- exponential-Gamma; Two Dimensional Random Variables: Joint Distribution, Marguinal and Conditional Distribution, Covariance, Correlation Coefficient, Linear Regression.	10
Module-III	Transformation of random variables, Sampling Distributions: The Central Limit Theorem, distributions of the sample mean and the sample variance for a normal population, Chi-square, t- and F distributions. Descriptive Statistics: Graphical representation, measures of locations and variability.	09
Module-IV	Estimation: Unbiasedness, Consistency, the method of moments and the method of maximum likelihood estimation, confidence intervals for parameters in one sample and two sample problems of normal populations, confidence intervals for proportions.	07
Module-V	Testing of hypotheses: Null and alternative hypotheses, the critical and acceptance regions, two types of error, power of the test, the most powerful test and Neyman-Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions, Chi-square goodness of fit test and its applications.	09
	Total	43
Text	 P G Hoel, S C Port, C J Stone, <i>Introduction to Probability Theor</i> Stall; 2000. J. Medhi, <i>Stochastic Processes</i>, New Age International, 4th edition, 	-
Reference	1. R. D. Yates and D. J. Goodman, <i>Probability and Stochastic Proce</i> 2 nd edition, 2012.	esses, Wiley India,

Course Code	Course name	L	Т	Р	С	Year	Semester
ME204	Design of Machine Elements	3	0	0	3	2 nd	4 th
Course objective) •						

Course objective:

1. To understand procedure of machine design and develop an ability to apply it for simple component design by using design data hand book.

2. To understand the different theories of failure and develop an ability to apply its knowledge for design of mechanical component and determine the resisting areas against failure.

3. To determine forces on transmission shaft and design of transmission shaft.

- To determine the endurance strength and design of components subjected to fluctuating loads. 4.
- 5. To determine the forces in welds and riveted joints and formulate design solution for size of weld and size of rivet.
- 6. To determine forces on power screw and bolted joints and formulate design solution for size of power screw and size of bolt.

Contents	No. of Lectures
Module : 1	
Introduction to the design process, factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers, fits and tolerances - Direct, Bending and torsional stress equations - Impact and shock loading - calculation of principle stresses for various load combinations, eccentric loading - curved beams - crane hook and 'C' frame- Factor of safety - theories of failure - Design based on strength and stiffness - stress concentration - Design for variable loading	8
Module : 2	I
Design of solid and hollow shafts based on strength, rigidity and critical speed - Keys, keyways and splines - Rigid and flexible couplings	8
Module : 3	1

Threaded fastner - Welded joints, 1 drive, chain drive	8				
Module : 4					
Various types of springs, optimization of helical springs, Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts					
Module : 5					
Sliding contact and rolling contact bearings, Hydrodynamic journal bearings, Sommerfeld Number, Selection of Rolling Contact bearings					
	Tetal				
	Total	39			
	10tai	39			
Text	 V. B. Bhandari, "Design of Machine Elements", 2nd Ed., Tata Mcgra Design Data Book of Engineers, Compiled by Faculty of Mechanical PSG College of Technology, Publisher KalaikathirAchchagam, 0 2009. 	w Hill, 2007. Engineering,			

Course Code	Course name	L	Т	P	С	Year	Semeste
							r
ME205	Kinematics of Machinery	3	0	0	3	2 nd	4 th
Course objective	2:						
1. To understand the basic components and mechanism of linkages in the assembly							
/mac			1	•			.1
	nderstand the principles of mechan						o the
	acement, velocity, and acceleration inderstand the motion of a specified					ζ.	
	esign cam mechanisms for specifie						
	nderstand the concepts of gears and					rains	
5. 10 u	inderstand the concepts of gears and	i Rinei	nutie	5 01 8	Jour (iumo.	
	Contents						No. of
							Lectures
Module 1							
							8
BASICS OF ME	CHANISMS: Introduction, mecha	nisms	and	macł	nines	types of constrained	
motion, rigid and	resistant bodies, link, types of link	s, kin	emat	ic pa	irs, ty	pes of joints, degree	
of freedom, classification of kinematics pairs, kinematic of chain, Elements of kinematic chain,							
or needoni, classi	linkage, mechanism and structure, mechanism and their inversions: Four bar, Slider crank,						
	sm and structure, mechanism and	their	inve	rsion	s: Fo	ur bar, Slider crank,	
		their	inve	rsion	s: Fo	ur bar, Slider crank,	
linkage, mechani	nk	their	inve	rsion	s: Fc	ur bar, Slider crank,	
linkage, mechani Double slider cra Mobility of mech	nk						

	Total	40
Gear trai	ins: simple, compound and epicyclic gearing	
	AND GEAR TRAINS: Gears (spur, helical, bevel and worm)	8
Module		
10110 0001	having kinte euge, renerand nat face follower finnle and offset.	
-	having knife-edge, rollerand flat-face follower inline and offset.	
	almotion. Under cutting, Cam profiles: disc cam with reciprocating / oscillating	
	or uniform velocity, Simple Harmonic Motion, Uniform Acceleration Retradation,	o
	refinition, types of cam, types of followers, displacement, velocity and acceleration	8
Module	4	
and path	generation	
	ESIS OF MECHANISM: Introduction, Dimensional synthesis for motion; function	
	Construction: Analysis of velocity and acceleration of single slider crank mechanism.	
	Determination of linear and angular velocity using instantaneous center method.	
Velocity		8
Module	-	
and slotte	ed-liver mechanism, Coriolis acceleration components.	
	sms by graphical and analytical: Four bar mechanism, slider crank mechanism, crank	
	ATICS OF LINKAGE: Displacement, velocity and acceleration analysis of planar	8
Pawl me	s mechanism, Intermittent Motion mechanisms:Genevawheel mechanism, Ratchet and echanism, toggle mechanism, pantograph, condition forcorrect steering, Ackerman gear mechanism. 2	

Text	1. K. J, Waldron and G. L. Kinzel, "Kinematics, Dynamics and Design of
	Machinery", 2nd Ed., Wiley Student Edition, 2004.
	2. S. S. Rattan, "Theory of Machines", 4th Edition, Tata McGraw-Hill, 2014.
Reference	1. J. J. Uicker (Jr), G. R. Pennock and J. E. Shigley, "Theory of Machines and
	Mechanisms", 3rd ed., Oxford International Student Edition.
	2. R. L. Norton, "Kinematics and Dynamics of Machinery", Tata Mcgraw Hill,
	2009.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME206	Manufacturing Science	3	0	2	4	2 nd	4
during proje engineering.	e: various methods of manufacturing p ct or any other research works of knowledge on selection of su	the s	stude	nts n	nainl	y Electron	nics and Mechatronics

Introduction to materials. Vari viz., sand casti continuous cas welding metho friction stir wel	7	
Module : 2		
Various metal f sheet metal deformation; M	7	
Module : 3		
geometry and Machine tool: on machines: I drilling, borin	ools (material, temperature, wear, and life considerations), chip formation; surface finish and machinability; optimization; Generation and machining principles; Setting and Operations athe, milling (including indexing), shaping, slotting, planing, ag, broaching, grinding (cylindrical, surface, centreless), thread r cutting machines	7
Module : 4		
-	es: Purposes of jigs and fixtures principles of location and oduction and Familiar with M-codes and G-codes ; Introduction,	7
Module : 5		
Discharge Mac	chining, Water Jet Machining, Abrasive Jet Machining, Electric chining, Electron Beam Machining, Laser Beam Machining, Ion ing, Electro chemical Machining, etc. Process, advantages,	8
	Total	36
Text	1. A. Ghosh and A. K. Mallik, "Manufacturing Science", Wile	ey Eastern, 1986.
Text	 A. Ghosh and A. K. Mallik, "Manufacturing Science", Wile P. N. Rao, "Manufacturing Technology: Vol. I and Vol. II", 	•
Text Reference		Tata McGraw Hill.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME207	Fluid Mechanics	3	0	0	3	2^{nd}	4 th
Course objective 1) To develop understanding of properties of Newtonian fluid.							

- 2) To develop understanding about hydrostatic law, principle of buoyancy and stability of a floating body and application of mass, momentum and energy equation in fluid flow.
- 3) To imbibe basic laws and equations used for analysis of static and dynamic fluids.
- 4) To inculcate the importance of fluid flow measurement and its applications in Industries.
- 5) To determine the losses in a flow system, flow through pipes, boundary layer flow and flow past immersed bodies.

	Contents	No. of
		Lectures
Module-I		
	Introduction, properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapourpressure, compressibility and bulk modulus. Concept of continuum, types of fluids etc., pressure at a point in the static mass of fluid, variation of pressure, Pascal's law, Absolute, gauge, atmospheric and vacuum pressures pressure measurement by simple, differential manometers and mechanical gauges.	8
	Total pressure and center of pressure for horizontal plane, vertical plane surface and inclined plane surface submerged in static fluid. Buoyancy, center of buoyancy, meta center and meta centric height its application in shipping, stability of floating bodies.	
Module-2		
	Types of Flow-steady, unsteady, uniform, non-uniform, laminar, turbulent, one, two and three dimensional, compressible, incompressible, rotational, irrotational, stream lines, path lines, streak lines, velocity components, convective and local acceleration, velocity potential, stream function, continuity equation in Cartesian co-ordinates. Rotation, vorticity and circulation, Laplace equation in velocity potential and Poisson equation in stream function, flow net.	8
	Momentum equation, Impacts of jets- force on fixed and moving vanes.Euler's equation, Integration of Euler's equation to obtain Bernoulli's equation, Bernoulli's theorem, Application of Bernoulli's theorem such as venture meter, orifice meter, rectangular and triangular notch, pitot tube, orifices etc.	
Module-3		
	 Reynold's Number, Entrance flow and Developed flow, Navier-Stokes Equation, Laminar flow between parallel plates, Poiseuille equation – velocity profile, Couette flow, fully developed laminar flow in circular pipes, Hagen - Poiseuille equation. Energy consideration in pipe flow, Loss of Pressure Head due to Fluid Friction, Darcy Weishach formula, major and minor losses in pipes, Commercial pipe, Colebrook equation, Moody equation/ diagram. Pipes in series, parallel, equivalent pipe. 	8
Module-4		
	Development of boundary layer, Prandtl's boundary layer equations, Blasius solution, laminar layer over a flat plate, boundary layer separation and its control. Basic concept of Lift and Drag, Types of drag, Co-efficient of drag and lift, streamline body and bluff body, flow around circular bodies and airfoils, Lift and drag on airfoil.	8
Module-5		
	Dimensional analysis: Need for dimensional analysis, Dimensions and units, Dimensional Homogeneity and dimensionless ratios, methods of dimensional analysis, Rayleigh's method, Buckingham Pi theorem, Similitude and Model studies.	6
	Total	38

Reference	1) Y. A. Cengel and J. M. Cimbala, "Fluid Mechanics, Fundamentals and Applications", 7th Ed. Tata
	McGraw Hill, New Delhi, 2009.
	2) S. K. Som and G. Biswas, "Fluid Mechanics and fluid Machines", 2nd Ed., Tata McGraw Hill,
	New Delhi, 2005.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME212	Simulation Lab	0	0	3	2	2^{nd}	4^{th}

Course objective:

The course is intended to expose the student to the various simulation tools (Adams, Ansys, Maxwell) so that they would be able to,

- 1) Design and simulate a mechanism
- 2) Perform structural analysis
- 3) Design and simulate electromagnetic systems

Торіс	Contents	No. of Lab
Mechanism simulation	To study and make the various types of Links, Pairs, Chain and Mechanism in MSC Adams.	1
	To study and make inversion of Four Bar Mechanism, Single Slider Crank Chain Mechanism and Double Slider Crank Chain Mechanism in MSC Adams.	1
	To plot velocity diagram for Slider Crank Mechanism in MSC Adams	1
	To setup the various types of Cam and Follower arrangement and plot follower displacement Vs cam rotation graph for various cam follower arrangement in MSC Adams.	1
Structural Analysis	 Stress analysis of, 1. Bars of constant cross section area, tapered cross section area and stepped bar 2. Beams –Simply supported, cantilever, beams with point load, UDL, beams with varyingload 3. A rectangular plate with a circular hole 	5
Electromagnetic Analysis	Modelling of a horseshoe-shaped permanent magnet and calculation of force acting on a nearby iron	1
	Modelling of a E-core transformer	1
	Voltage Induced in a Coil by a Moving Magnet	1
	Total	12

Course Code	Course name	L	Т	Р	С	Year	Semester
EC301	Digital Signal Processing	3	0	0	3	3 rd	5 th
principles of d transforms to f frequency char	EC301Digital Signal Processing30033 rd 5 th Course objective: The main objectives of the course are: to identify the signals and systems, apply the principles of discrete-time signal analysis to perform various signal operations, apply the principles of z- transforms to finite difference equations, apply the principles of Fourier transform analysis to describe the frequency characteristics of discrete-time signals and systems, apply the principles of signal analysis to filtering and use computer programming tools to process and visualize signals.30033 rd 5 th						

Торіс	Contents	No. of Lectures
Module-1	Review of discrete time signals, systems and transforms: Discrete time signals, systems and their classification; Analysis of discrete time LTI systems: impulse response, difference equation, frequency response, transfer function, DTFT, DTFS and Z-transform.	08
Module-2	Ideal filter characteristics, low-pass, high-pass, band-pass and band- stop filters, Paley-Wiener criterion, digital resonators, notch filters, comb filters, Butterworth filter, chebyshev filter, inverse systems, minimum phase, maximum phase and mixed phase systems.	08
Module-3	Signal flow graph representation, basic structures for FIR and IIR systems (direct, parallel, cascade and polyphase forms), transposition theorem, ladder and lattice structures; Design of FIR filters using windows, frequency sampling, Remez algorithm and least mean square error methods; Design of IIR filters using impulse invariance, bilinear transformation and frequency transformations.	09
Module-4	Computational problem, DFT relations, DFT properties, fast Fourier transform (FFT) algorithms (radix-2, decimation-in-time, decimation-in-frequency), Goertzel algorithm, linear convolution using DFT.	08
Module-5	Finite word-length effects in digital filters: Fixed and floating point representation of numbers, quantization noise in signal representations, finite word-length effects in coefficient representation, round-off noise, SQNR computation and limit cycle; Introduction to multi-rate signal processing: Decimation, interpolation, poly-phase decomposition.	09
	Total	42
Text	 S. K. Mitra, Digital Signal Processing: A Computer-Based Approx Hill, 2nd edition, 2001. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Prin and Applications, PHI, 4th edition, 2007. 	ciples, Algorithms
Reference	1. A. V. Oppenheim and R. W. Shafer, <i>Discrete-Time Signal Pro</i> edition, 2004.	ocessing; PHI, 2 nd

Course Code	Course name	L	Т	Р	С	Year	Semester
EC302	Control Systems	3	1	0	4	3 rd	5 th
Course objective: To provide the basic skills required to understand, develop, an engineering applications involving electromagnetic fields. To lay the foundations of electists practice in modern communications such as wireless, guided wave principles such a electronic electromagnetic structures.							ctromagnetism and as fiber optics and
Торіс	Contents						No. of Lectures
Module-1	systems, Derivation of Transfer Mason's Gain Formula; Feedl Systems; Time response of first	Basic Concepts of Control Systems: Open loop and closed loop systems, Derivation of Transfer functions, Signal flow Graphs, Mason's Gain Formula; Feedback characteristics of Control Systems; Time response of first order and Second order systems, Steady State Errors and Static Error Constants of systems.					
Module-2Routh-Hurwitz stability criterion, Application of the Routh stability criterion to linear feedback system, Relative stability by shifting the origin in s-plane; Root locus concepts, Root contours, Systems with transportation lag. Effect of adding open loop poles and zeros on Root locus; Frequency domain specifications, correlation between Time and Frequency Response with respect to second order system, Polar plots, Bode plot, Determination of Gain Margin and Phase Margin from Bode plot						08	
Module-3	Stability in frequency domain: stability criterion, Application of linear feedback system. Constan Nichol's chart; Controllers: Con and Integral Control actions, P, Nichols method of tuning PID co	Prin of N nt M ncept PD,	ciple yquis -circl of F PI, P	t sta es, C Propo	bility Const rtion	v criterion for ant N-Circles, al, Derivative	08

Module-4	Mapping between the S-Plane and the Z-Plane, Primary strips and Complementary Strips, Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane. Jury stability test, Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.	08			
Module-5	Transient and steady State Response Analysis, Design based on the frequency response method, Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PI, PD, and PID controllers.	09			
	Total	42			
 Text 1. I. G. Nagarath, M. Gopal, <i>Control Systems</i>, Tata McGraw Hill Education, 4th edition, 2012. 2. M. Gopal, Digital Control and State Variables Methods, Tata McGraw Hill Education, 2nd edition, 2003. 					
Reference	1. B. C. Kuo, Automatic Control Systems, Tata McGraw-Hill, 10th edition, 2017.				

Course	Course name	L	Т	Р	С	Year	Semester
Code							
ME301	Dynamics of Machinery	3	0	2	4	3 rd	6 th
Course ob	jective:						
1.	To understand the force-motion relations						
2.	To understand the importance of balancin						
3.	To understand the mechanism of control	•		•			
4.	To understand the importance of governo						ehicles.
5.	To understand the avoiding of undesirable	e vib	ratior	n froi	n the	system.	
							l
Contents							No. of Lectures
Module 1							
Static forc	e analysis: Introduction, Introduction: Sta	tic ec	quilib	rium	. Equ	ilibrium	8
of two and	three force members. Members with two for	rces a	and to	orque	e, Equ	ilibrium	
of four-for	rce member, Force convention, Free-boo	ly dia	agran	ns, S	uper	position,	
Principle o	f virtual works, Friction in mechanisms.						
Module 2							•
Dynamics	force analysis: D'Alembert's principle,	Inerti	a for	ce, i	nertia	torque.	8
Dynamic f	Force analysis of four-bar mechanism an	nd sli	der d	crank	med	hanism.	
Dynamical	ly equivalent systems. Turning momen	t dia	gram	is an	d fl	wheels.	
Fluctuation	of Energy. Determination of size of flywl	neels.					
BALANC	ING: Static and dynamic balancing, Bala	ancin	g of	seve	ral m	asses in	

 different planes, Balancing of rotating and reciprocating masses.

 Module 3

 Gyroscope: Gyroscope and gyroscopic effects: Introduction, Angular velocity and acceleration, Gyroscopic torque (couple), Gyroscopic effect on airplane and naval ship, Stability of an automobile and a two-wheel vehicle.
 8

 Governors: Introduction, types of governor , Watt, Porter, Proell, Hartnel, Hartung, Wilson-Hartnel, Spring-controlled gravity and Inertia governor, Controlling force ,Stability, Sensitiveness of governor, Isochronism, Effort and power of governor.

 Cam dynamics: analysis of cam and follower, jump phenomenon;

 Module 4

Vibration: Vibrations of one degree of freedom systems; Free and Force vibrations; Transverse and torsional vibrations of two and three rotor systems; critical speeds; Vibration isolation and measurements; two-degree of freedom systems; Geared system	8
Module 5	
Introduction to Multi-degree of Freedom System :normal mode vibration, coordinate coupling, forced harmonic vibration, vibration absorber (tuned, and centrifugal pendulum absorber), vibration damper; Properties of vibrating system, flexibility matrix, stiffness matrix, reciprocity theorem, eigenvalues and eigenvectors, orthogonal properties of eigenvectors, modal matrix, Rayleigh damping, Normal mode summation.	8
Total	40

Course Code	Course name	L	Т	Р	C	Year	Semester
ME302	Sensors and actuators	3	0	0	3	3 rd	5 th
Course objectiv	/e:			1	1	L	
sensors. 2. Sensor a	applications in various fields. vide knowledge of the principles	C					
actuator							
	Content	2					No. of
	Content	,					Lectures
Module 1							
Basics of Meas	surement – Classification of erro	rs – E	rror a	analy	sis -	- Static and dynamic	8
characteristics o	f transducers – Performance measu	res of	sensc	ors –	Class	sification of sensors –	
Sensor calibration	on techniques – Sensor Output Sign	al Typ	es.				
		• •					
Module 2							
Motion, Proxi	mity And Ranging Sensors: Mo	tion S	ensor	·s –	Poter	ntiometers, Resolver,	8
Encoders – Opti	cal, Magnetic, Inductive, Capacitiv	e, LV	DT –	RVI	DT –	Synchro – Microsyn,	
Accelerometer -	- GPS, Bluetooth, Range Sensors – I	RF bea	cons,	Ultra	asoni	c Ranging, Reflective	
beacons, Laser I	Range Sensor (LIDAR).						
Module 3							
Force, Magneti	ic and Heading Sensors: Strain G	age, L	oad (Cell,	Mag	netic Sensors -types,	9
principle, requir	rement and advantages: Magneto	resisti	ve –	Hall	Eff	ect – Current sensor	
Heading Sensors	s – Compass, Gyroscope, Inclinom	eters.					
					11	1 . 1. 1 D1	
Optical , Pressu	re and Temperature Sensors :P	noto co	onduc	ctive	cell,	photo voltaic, Photo	

Optical, Pressure and Temperature Sensors :Photo conductive cell, photo voltaic, Photo resistive, LDR – Fibre optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and level measurement, Radiation Sensors - Smart Sensors - Film sensor, LASER sensors, Bio & Nano sensors **Module 4**

Actuator: Hyd	raulic systems: flow, pressure and direction control valves, actuators, and	9
supporting elem	ents, hydraulic power packs, pumps. Design of hydraulic circuits, Pneumatics:	
production, dist	ribution and conditioning of compressed air, system components and graphic	
representations,	design of systems	
Module 5		
SIGNAL CON	DITIONING AND DAQ SYSTEMS : Amplification – Filtering – Sample and	8
Hold circuits -	Data Acquisition: Single channel and multi channel data acquisition – Data	
logging - app	olications - Automobile, Aerospace, Home appliances, Manufacturing,	
Environmental	monitoring	
	Total	42
Text	1. D. D. Patranabis, "Sensors and Transducers", PHI Learning Private Limit	ted.
	2. D.A.Hall, Sensors and Actuators, 1999 by CRC Press, 256 Pag	ges, ISBN
	9781861250896.	

Course Code	Course name	L	Т	Р	С	Year	Semester	
CS303Artificial Intelligence30243 rd 5 th								
Course Objective: The objective of the course is to present an overview of artificial intelligence (AI)								
principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms								
of intelligent agen	of intelligent agents: Search, Knowledge representation, inference, logic, and learning.							

Topic	Contents	No. of Lectures					
Module 1	Fundamental issues in intelligent systems: History of artificial intelligence; philosophical questions; fundamental definitions; philosophical questions; modeling the world; the role of heuristics.	2					
Module 2	Search and constraint satisfaction: Problem spaces; brute-force search; best-first search; two-player games; constraint satisfaction.10						
Module 3	Knowledge representation and reasoning: Review of propositional and predicate logic; resolution and theorem proving; non-monotonic inference; probabilistic reasoning; Bayes theorem.8						
Module 4	AI planning systems: Definition and examples of planning systems; planning as search; operator-based planning; propositional planning.8						
Module 5	Adule 5Sequential decision making: Achieving behaviour by specifying rewards, Markov Decision Problems.						
	Total	35					
Text Books	 Stuart Russell and Peter Norvig: Artifical Intelligence: A Modern Approach, Pearson; Third edition (2013). Elaine Rich, Kevin Knight and Shivashankar B Nair, Artificial Intelligence, Tata McGraw Hill, 3rd Edition 2009. 						
Reference Books	ence						
	2. Clocksin & Mellish, Programming in PROLOG, Narosa Pu	bl. House.					

Course Code Course name L T P C Vear Semester								
	Course Code	Course name	L	Т	Р	C	Year	Semester

EC304	IoT & Embedded Systems 3 0 0 3 3 rd	5 th				
	e: This main objective of this course facilitates to design, describe, val	Ũ				
	onic systems in different industrial application areas. More particularly,					
	advanced processors, their instruction sets, interfacings to develop different kinds of systems.					
development		noedded sontware				
Topic	Contents	No. of Lectures				
Торіс	An introduction to Embedded system design & modelling with	No. of Lectures				
Module-I	An introduction to Embedded system design & modeling with unified mark-up language; 8-bit and 16- bit, von Neumann and Harvard architectures, CISC and RISC architectures; Advanced RISC Machines, Open source core (LEOX), Introduction to microcontrollers, ARM versions, ARM instruction set: assembly language, Thumb instruction set, memory organization, data operations and flow control; Input/output mechanisms, isolated and memory mapped IO; interrupts and real time operations, ARM interrupts vectors, priorities and latency; co-processors; cache	09				
	memory and memory management.					
Module-II	Embedded Platforms: bus protocols, system bus configuration, USB and SPI buses, DMA, ARM bus; memory devices: memory device configuration, ROM, RAM, DRAM; I/O devices: timers, counters, ADC & DAC, keyboards, displays and touch screens. Processes: multiple tasks and multiple processes; process abstraction; context switching: cooperative multitasking, pre-emptive multitasking, process and object-oriented design	09				
Module-III	Operating Systems: operating systems and RTOS; scheduling polices; inter-process communication; Networks: distributed embedded architectures: networks abstractions, hardware and software architectures; networks for embedded systems: I2C bus, CAN bus.	09				
Module-IV	An Introduction to Internet-of-Things, Sensing, Actuation, Basics of Networking; Communication Protocols, Sensor Networks, Machine- to-Machine Communications, Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	07				
Module-V	Developing IoTs: Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python; Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT applications.	08				
	Total	42				
Text	 A. N. Sloss, D. Symes, and C. Wright, ARM system developer's gu optimizing system software; Elsevier, 1st edition. 2008. Pethuru Raj and Anupama C. Raman, The Internet of Things: Enal Platforms, and Use Cases, CRC Press, 2017. 	bling Technologies,				
Reference	 Arshdeep Bahga and Vijay Madisetti, <i>Internet of Things: A Ha</i> Universities Press, 2017. W. Wolf, <i>Computers as components: Principles of embedded</i> <i>design</i>; Elsevier, 3rd edition, 2013. 					

Course Code	Course name	L	Т	Р	С	Year	Semester	
ME303	Mechatronics and Automation	3	0	0	3	3 rd	6 th	
Course objective: To introduce the need, evolution, and motivation for Industrial Automation. Familiarization with basic concepts and different automation strategies being used in practice worldwide.								

Module : 1	Contents	No. of Lectures
Muule . 1		
process, Syste	o design of mechatronics system: What is mechatronics – the design ms, Measurement systems, Control systems, Programmable logic mple of mechatronic systems.	7
Module : 2		•
•	modelling: Mathematical models, Mechanical system building blocks, em building blocks, Fluid system building blocks, Thermal system	8
Module : 3		I
electro-mechan	system modelling: Engineering systems: Rotational – translational, ical, pneumatic-mechanical, hydraulic-mechanical, micro electro tem – Dynamic responses of system: first order, second order system – easures.	8
Module : 4		
Programmable Architecture an modules, CPU Converting sim instructions – M relays.	8	
Module : 5		
timers, Up /Dov instructions; A applications, A Conveyor belt,	of PLC: Timer instructions - On delay, Off delay, Cyclic and Retentive wn Counters, control instructions – Data manipulating instructions, math pplications of PLC – Motor start and stop, Simple materials handling Automatic water level controller, Automatic lubrication of supplier Automatic car washing machine, Bottle label detection and process tion.	10
timers, Up /Dov instructions; Aj applications, A	wn Counters, control instructions – Data manipulating instructions, math pplications of PLC – Motor start and stop, Simple materials handling Automatic water level controller, Automatic lubrication of supplier Automatic car washing machine, Bottle label detection and process	10 42
timers, Up /Dov instructions; A applications, A Conveyor belt,	wn Counters, control instructions – Data manipulating instructions, math pplications of PLC – Motor start and stop, Simple materials handling Automatic water level controller, Automatic lubrication of supplier Automatic car washing machine, Bottle label detection and process tion.	42 ',3rd India editior
timers, Up /Dov instructions; Aj applications, A Conveyor belt, control applicat	wn Counters, control instructions – Data manipulating instructions, math pplications of PLC – Motor start and stop, Simple materials handling Automatic water level controller, Automatic lubrication of supplier Automatic car washing machine, Bottle label detection and process tion. Total 1. Gary Dunning, "Introduction to Programmable Logic Controllers" Cengage Learning, 2007 2. John Webb, "Programmable Logic Controllers: Principles and	42 ',3rd India editior Applications'',5t
timers, Up /Dov instructions; Aj applications, A Conveyor belt, control applicat	wn Counters, control instructions – Data manipulating instructions, math pplications of PLC – Motor start and stop, Simple materials handling Automatic water level controller, Automatic lubrication of supplier Automatic car washing machine, Bottle label detection and process tion. Total 1. Gary Dunning, "Introduction to Programmable Logic Controllers" Cengage Learning, 2007 2. John Webb, "Programmable Logic Controllers: Principles and edition Prentice Hall of India, 2012. 1. W. Bolton, "Mechatronics: electronic control systems in mechan	42 ',3rd India edition Applications'',5t

MESUO	Technology	Z	0	0	Ζ	5	0
Course object	ve: To bring in the importance and	the u	unde	rlyin	g pri	nciples of gree	en and sustainable
technology.							
Topic	Contents				No. of Lectures		

Module-I	Introduction to Environmental Pollution: Environmental Awareness, Concept of an ecosystem, structure and function of an ecosystem, energy and nutrient flow, biogeochemical cycles, sources, pathways and fate of environmental pollutants.	05
Module-II	Air pollution- Introduction, Segments of environment, Layers of atmosphere and their significance; Mechanism, Causative factors, Consequences and Preventive measures – Ozone depletion, Greenhouse effect and Global warming; Earth's radiation budget, Classification of air pollutants, Indoor air pollution, Smog- photochemical and sulphurous, Acid rain, Air Quality Standards, Human health effects-Bhopal gas tragedy.	05
Module-III	Water Resource; Water Pollution : Definition, Classification , Sources of Contamination, Pollutants & their Detrimental Effects; Water Quality: Portability limit – WHO and PHED Specification; Water Quality Monitoring, Municipal Water Treatment: Slow and Rapid Sand Filter, Disinfection – Methods, Advantages & Disadvantages, Sterilization	05
Module-IV	Soil and Noise pollution: Lithosphere and Soil profile, Soil contamination, sources of soil contamination, Important environmental properties of soil contaminants, Ecological & Health effects, Exposure & Risk Assessment; Noise pollution: Brief introduction to noise pollution, source, measurement and prevention of noise pollution	05
Module-V	Radioactive Pollution & Solid Waste Management: Radioactive pollutant: units of radiation and instruments for their measurements, types of radioactive pollutants and risk factor associated with these radiations Radioactive waste and their disposal, accidental leakage of radiation from nuclear reactors (discuss Chernobyl and Fukushima) Solid waste management different types of solid waste, composting, biological methods of detoxification of hazardous waste Onsite handling and composting, integrated solid waste management,	05
	Total	42
Text	 Miller, T. G. Jr., <i>Environmental Science</i>, Wadsworth Publishing F Masters, G.M, <i>Introduction to Environmental Engineering</i>. 	House, USA.

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS307	Machine Learning	3	0	0	3	3 rd	6 th
Course Objective: Machine learning is the science of getting computers to act without							eing explicitly
programmed. Mac	chine learning is so pervasive today that	at yo	u pro	babl	y use	e it dozens of	times a day
without knowing	it. This course will help the students to	lear	n the	nec	essar	y details to c	reate next
generation applica	ations.						
Topic							Hour
Module I	Introduction: History of machine least	rning	, Ba	sic c	once	pts	3
Module II	Supervised learning: Supervised lear regression, Perceptron, Exponential f algorithms, Gaussian discriminant an vector machines, Model selection and methods: Bagging, boosting.	famil alys	y, G is, N	enera aive	ative Baye	learning es, Support	10
Module III	Learning theory: Bias/variance trade Chernoff/Hoeffding bounds, VC dim learning.					e (online)	7
Module IV	Unsupervised learning: Clustering K Gaussians, Factor analysis, PCA (Pri ICA (Independent components analy	ncip					8
Module V	Reinforcement learning and control: MDPs. Bellman equations, Value iteration and policy iteration, Linear quadratic regulation (LQR), Q-learning. Value function approximation, Policy search.				7		
						Total	35
Text	1.Ethem Alpaydin, Introductio2010.	n to	Mac	hine	Lear	ning, Second	Edition, PHI,

	2. Marsland, Stephen. Machine learning: an algorithmic perspective. Chapman and Hall/CRC, 2011.
Reference	 Murphy, Kevin P. "Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)." (2018), MIT Press. Brownlee, Jason. Machine Learning Mastery With Python: Understand Your Data, Create Accurate Models and Work Projects End-To-End. Jason Brownlee, 2016.

Course Code	Course name	L	Т	Р	С	Year	Semester
HS401	Professional Ethics in Engineers	2	0	0	2	4 th	7 th
	ve: To enable the students to create an						and Human Values,
	o instil Moral and Social Values and Loyalty and to appreciate the rights of others.						
Торіс	Conte						No. of Lectures
Module-I	HUMAN VALUES: Morals, Values and Ethics, Integrity, Work ethic, Service learning, Civic virtue, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Character- Spirituality, Introduction to Yoga and meditation for professional excellence and Stress management.						05
Module-II	ENGINEERING ETHICS: Senses of Engineering ethics, Variety of moral issues, types of inquiry- Moral dilemmas, Moral Autonomy, Kohlberg's theory, Gilligan's theory, Consensus and Controversy, Models of professional roles, Theories of right action, Self-interest, Customs and Religion, Uses of Ethical theories.					05	
Module-III	ENGINEERING AS SOCIAL EXPERIMENTATION: Engineering as Experimentation, Engineers as responsible experimenters, Code of ethics, A Balanced Outlook on Law					04	
Module-IV	SAFETY, RERSPONSIBILITIES A Assessment of Safety and risk, Risk Risk, Respect for authority, Collect Conflict of interest, Occupationa Employee Rights, Intellectual Prope	tive 1 al ci	nefit A Barga rime,	Anal ainin Pro	ysis a g, Co ofessi	and Reducing onfidentiality, onal Rights,	05
Module-V	GLOBAL ISSUES: Multinational Corporations, Environmental Ethics, Computer ethics, Weapons Development, Engineers as managers, Consulting engineers, Engineers as Expert Witnesses and Advisors, Moral Leadership, Code of conduct, Corporate Social Responsibility						05
	1					Total	24
Text	 Mike W Martin and Roland Sch 2003. Govindarajan M, Natarajan S, S of India, 2004. 		C			0 0	

Course Code	Course name	L	Т	Р	C	Year	Semester
ME402	Robotics	3	0	0	3	4 th	7 th
 To imp To intro 	oduce the functional elements art knowledge on the direct a oduce the manipulator differe	nd inverse kir ntial motion a			1.		
	cate on various path planning oduce the dynamics and contr		ators				
	Со	ntents					No. of Lectures

Introduction	Mathematical Modeling of Robots, Robots as Mechanical Devices,	9
	Common Kinematic Arrangements of Manipulators, Rigid Motions And	
	Homogeneous Transformations	
Module 2	· · · · · · · · · · · · · · · · · · ·	
Kinematics	Kinematic Chains, Forward Kinematics: The Denavit-Hartenberg,	9
	Convention, Inverse Kinematics, Angular Velocity: The Fixed Axis Case,	
	Skew Symmetric Matrices, Angular Velocity: The General Case, Addition	
	of Angular Velocities, Linear Velocity of a Point Attached to a	
	MovingFrame, Derivation of the Jacobian, Singularities	
Module 3	· · · · · · · · · · · · · · · · · · ·	
Dynamics of	The Euler-Lagrange Equations, General Expressions for Kinetic and	9
Robot	PotentialEnergy, Equations of Motion, Some Common Configurations,	
Manipulators	Properties of Robot Dynamic Equations, Newton-Euler Formulation	
Module 4		
Control of	PD control, Nonlinear Control, Stability, Lyapunov's Direct Method,	12
Robot	Adaptive Control	
Manipulator		
Module 5		
Path-	Configuration space, potential fields	5
Planning		
	Total	44

Text	1. M.W.Spong, S. Hutchinson and M. Vidyasagar, "Robot Modeling and Control", Wiley, 2006
	2. J. J. Craig, "Introduction to Robotics", Addision-Wesley, 1989
Reference	1. A. Ghosal, "Robotics: Fundamental Concepts and Analysis", Oxford University Press, 2nd reprint, 2008.

Elective-I Course Syllabus

Course Code	Course name	L	Т	P	С	Year	Semester
ME32X	Industrial Engineering	3	1	0	4	3 rd	6 th
Course objective: 1. An ability to recognize ethical and professional responsibilities in engineering situations and make							
informed juc	č	•				C	

- 2. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 4. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Торіс	Contents	No. of Lectures
Module : 1		
and value engin	duction Planning and Control, Product design, Value analysis eering, Plant location and layout, Equipment selection, nning, Job, batch, and flowproduction methods,	10
Module : 2		

Group technolog Work/job evalua II, JIT, CIM,	10					
Module : 3						
Quality control, management, T loading, Line	10					
Module : 4						
Introduction t method, Simple unit worth of res	10					
Module : 5						
Transportation p PERT, Queuing	problems, Assignment problems, Network models: CPM and theory	8				
	Total	48				
Text	 S. L. Narasimhan, D. W. McLeavey, and P. J. Billington, and Inventory Control", PrenticeHall, 1997. J. L. Riggs, "Production Systems: Planning, Analysis and Co 1981 					
Reference						

Course Code	Course name	L	Т	Р	С	Year	Semester
ME32X	CAD-CAM	3	1	0	4	3 rd	6 th
Course objective	e:						
1. To understand the concept of use of computer in product designing.							
2. To understand about the various type of curves and their use in produc							
3. To developed the programming skills for product development in mac						ent in mac	hines.
							ſ
	Contents						No. of Lectures
Module 1							
Introduction and components of Computer aided design (CAD)/Computer						8	
aidedmanufacturing (CAM)/Computer aided engineering (CAE) systems, Basic							
concepts of graphics programming.							
Transformations and Projections: Definition, Rigid Body Transformations,							
deformations.		-	-				
Rendering; Graphical user interface, Computer aided drafting systems, Geometric							
modeling systems – wireframe, surface and solid modeling systems, Nonmanifold							
systems, Assembly and web-based modeling systems.							
· · · · · · · · · · · · · · · · · · ·	,						

Module 2		
Differential Ge	ometry of Curves: Curve Interpolation, Curve Fitting,	8
Representing Cur	ves, Differential Geometry of Curves.	
Design of Curv	ves:Ferguson's or Hermite Cubic Segments, Three-Tangent	
-	ntric Coordinates and Affine Transformation, Bézier Segments,	
-	Curves, Rational Bézier Curves.	
•		
Module 3		
-	n, Why Splines?, Polynomial Splines, B-Splines (Basis-	8
Splines), Newton	's Divided Difference Method, Recursion Relation to Compute	
B-Spline Basis Fu	unctions, Properties of Normalized B-Spline Basis Functions, B-	
Spline Curves:	Definition, Design Features with B-Spline Curves,	
Parameterization,	Interpolation with B-Splines, Non-Uniform Rational B-Splines	
(NURBS).		
Module 4		
Differential Geo	metry of Surfaces: Parametric Representation of Surfaces,	8
Curves on a Surf	ace, Deviation of the Surface from the Tangent Plane: Second	
	rix, Classification of Points on a Surface, Curvature of a Surface:	
	Iean Curvature, Developable and Ruled Surfaces, Parallel	
	s of Revolution, Sweep Surfaces, Curve of Intersection between	
Two Surfaces.	s of revolution, sweep surfaces, curve of intersection between	
	and Tansor Product Surface Datab Boundary Interpolation	
e	ces: Tensor Product Surface Patch, Boundary Interpolation	
-	site Surfaces, B-Spline Surface Patch, Closed B-Spline Surface,	
	Patches (NURBS).	
Module 5	disting CAD/CAM interaction Newspirel and al	8
	otimization, CAD/CAM integration, Numerical control – al and computer assisted part programming, Virtual	ð
•	nponents and applications, Extensive laboratory work on CAD	
	oftware), CAM(manufacturing software), and CAE (Finite	
element analysis	software).	
	Total	40
Text	1 Anunam Savana and Dirandra Sahar "Computer Aidad	Engineering Design"
Iext	 Anupam Saxena and Birendra Sahay, "Computer Aided Springer, 2005. 	Engineering Design",
	2. Kunwoo Lee, "Principles of CAD/CAM/CAE system	ns", Addison Weslev.
	1999.	,
Reference	1. P. Radhakrishnan, S. Subramanyan, and V. Raju, "CAD	/CAM/CIM", 2nd
Kelefence	edition, New Age, 2000.	

Course Code	Course name	L	Т	Р	С	Year	Semester	
ME32X	Computational Intelligence	3	1	0	4	3 rd	6 th	
Course objective: 1. It provides an introduction to the basic principles, techniques, and applications of neural network								
•	fuzzy logic theory	p100, 00		1		appireatio		

2. Introduce s	students to artificial neural networks and fuzzy theory from an engin	neering perspective				
	No. of Lectures					
Module : 1						
	o soft computing, hard computing, Need for soft computing; neural networks;	8				
Module : 2						
perceptron; Ra	of artificial neural networks-single-layer perceptron, multilayer adial basis function networks; SOM; Recurrent neural networks; eural network; Applications of neural networks in mechanical	8				
Module : 3						
Introduction to tools –tradition etc.;	8					
Module : 4		<u>.</u>				
Genetic Algorit Networks–Fuzz	thms–FuzzyLogic, Genetic Algorithms–Neural Networks, Neural zy Logic.	8				
	Total	32				
		·				
Text	 D. K. Pratihar, "Soft Computing", Narosa Publishing House, 2008. S. Haykin, "Neural Networks: A Comprehensive Foundation", 2nd Ed, Pearson Education, 1999. 					
Reference	 P. M. Dixit, U. S. Dixit, "Modeling of metal forming and machining processes: by finite element and soft computing methods", 1st Ed, Springer-Verlag, 2008. K. Deb, "Optimization for Engineering Design: Algorithms and Examples", Prentice Hall, 2006. 					

Course	Course name	L	Т	Р	С	Year	Semester
Code							
ME32X	Finite Element Method	3	1	0	4	3 rd	6 th
Course objective: Finite Element Method (FEM) is a numerical technique for solving differential equations that describe many engineering problems. Main reason for its popularity is that the method results in computer codes which are versatile in nature that can solve many practical problems with minimum training. Obviously, there is danger in using commercially available computer software without proper understanding of the theory behind them, and that is one of the reasons to have a thorough understanding of the theory behind FEM.							
Contents					No. of Lectures		
Module 1							1

Objective of	the Course, Basic Steps in FEM Formulation, General Applicability of the	8
-	ational Functional, Ritz Method, Variational FEM : Derivation of Elemental	
-	sembly, Imposition of Boundary Conditions, Solution of the Equations,	
Module 2		
	nts, Basis Functions and Shape Functions, Convergence Criteria, h and p	8
Approximatio	ons, Natural Coordinates, Numerical Integration, Gauss Elimination based	
	nate Formulation: Weighted Residual Method, Galerkin Method;	
	h C1 Continuity: Beam Bending, Connectivity and Assembly of C1 Continuity	
Elements		
Module 3		
Natural Coord Assembly, Im	Inctional; 2-D Elements (Triangles and Quadrilaterals) and Shape Functions, linates, Numerical Integration, Elemental Equations, .Connectivity and position of Boundary Conditions, Axisymmetric (Heat Conduction) Problem, nd Plane Stress Solid Mechanics Problems.	
Module 4		
Sub-parametr	ic, Iso-parametric and Super-parametric Elements; Elements with C1 Continuity,	7
Free Vibration	n Problems, Formulation of Eigen Value Problem, FEM Formulation,	
Module 5	·	
Time-depende	ent Problems, Combination of Galerkin FEM and FDM (Finite Difference	7
Method), Cor	nvergence and Stability of FD Scheme, Problems with Material Non-linearity,	
Direct Solution	on Technique.	
	Total	38
T		2000
Text	1) U. S. Dixit, "Finite Element Methods For Engineers", Cengage Learning Asia	, 2009.
	2) K. J. Bathe, "Finite Element Procedures", Prentice Hall, 1996.	
Reference	1) R. D. Cook, D. S. Malkus, M. E. Plesha and R.J. witt, "Conceptsand Applicat	ions of
	Finite Element Analysis", 4th Edition, Wiley-India,2007	

Course	Course name	L	Т	P	С	Year	Semester		
Code					-				
ME32X	Electric and Hybrid Vehicles	3	1	0	4	3 rd	6 th		
	jective: Electric and hybrid elec	· •							
	systems; their design requires holistic consideration of vehicle and tire dynamics, powertrain, electricmotors								
	s, and control and estimation modul								
be able to g	et an overview of system level mode	elling	g of E	lecti	ric an	a Hybrid	Vehicles.		
	Contents						No. of Lectures		
Module – I									
Introductio	on to Vehicle Propulsion and	Powe	ertra	in T	ſechn	ologies:	8		
History of	Vehicle Development, Internal Co	ombu	stion	Eng	gine	Vehicles			
(ICEVs), V	Vehicles with Alternative Fuels,	Pov	vertra	in 7	Fechr	nologies,			
Transmissio	on Systems, Drivetrain and Differen	tials.							
Electric ar	nd Hybrid Powertrain Technolo	gies:	Intr	oduc	ction,	Battery			
Electric Vel	hicles (BEVs), Fuel-Cell Electric V	ehic	les (F	CEV	/s),				
Module – I	Ι								
Hybrid Ele	ectric Vehicles, Plug-in Hybrid E	lectr	ic V	ehic	les (l	PHEVs),	8		
Hybrid Hydraulic Vehicles (HHVs), Pneumatic Hybrid Vehicles (PHVs),									
Power/Energy Management Systems.									
Body and Chassis Technologies and Design: Introduction, General									
Configuration of Automobiles, Body and Chassis Fundamentals, Different									
Types of St	ructural Systems,								

Module – III					
Body and Chassis Materials, Specific Considerations in Body and Chassis8					
Design of Electric and Hybrid Electric Vehicles, The Chassis Systems of					
Electric and Hybrid Electric Vehicles.					
Module – IV					
Vehicle Dynamics Fundamentals:Concepts and Terminology, Vehicle8					
Kinematics, Tire Mechanics and Modeling.					
Vehicle Dynamics Fundamentals: ICE Performance Characteristics,					
Electric Motor Performance Characteristics,					
Module – V					
Battery Performance Characteristics, Transmission and Drivetrain 8					
Characteristics, Regenerative Braking Characteristics, Driving Cycles.					
Powertrains Components: Case Study: Introduction, Rechargeable					
Battery Vehicles, Hybrid Vehicles, Fuel Cell Powered Bus					
Total 40					
Text1) A. Khajepour, S. Fallah and A. Goodarji, "Electric and Hybrid Vehicles, technologies,					
modeling and control: A mechatronic approach", Willey, 2014.					
2) J. Larminie and J. Lowry, "Electric vehicle technology explained", wiley, 2003.					

Course Code	Course name	L	Т	Р	С	Year	Semester
ME32×	Advance Electrical Machine Design	3	1	0	4	3 rd	6 th
	ve:The objective is to introduced basic desi						
students would b	be able to understand various design conside	eratio	n in (lesig	nıng	of electrical machin	nes
	Contents						No. of
							Lectures
Module 1							
Module 1							
						a	_
^	sign, Factors for Consideration, Classificati			•			7
	Constraints of Design, Dimensions and Ratir	•					
Machine, AC M	Iachine), Materials for Electrical Machines	, Hea	t Dis	ssipa	tion	Modes, Types of	
Cooling (Ventil	ation), Types of Enclosure, Quantity of Co	olan	t, Ty	pes o	of Di	ities and Ratings,	
Determination o	f Temperature Rise and Fall						
Module 2							
Analysis of Serie	es Composite Magnetic Circuit, Analysis of l	Parall	el Co	ompo	site l	Magnetic Circuits,	7
Comparison Ber	tween Magnetic Circuit and Electric Circu	it, D	etern	ninati	on c	of Reluctance and	
MMF of Air Gap	p, Determination of MMF of Teeth, Real Flu	x Dei	nsity	and A	Арра	rent Flux Density,	
Iron Loss Calcu	llation(Hysteresis Loss, Eddy Current Loss	, Tot	al Ir	on or	Cor	e Loss, Pulsation	
Loss), Magnetic	: Leakage, Estimation of Specific Permeand	ce an	d Lea	akage	e Rea	actance, Magnetic	
Pull							
Module 3							
Introduction (Based on Voltage Ratio, Based on Construction, Based on Application, Based on						7	
Number of Phases, Specifications of a Transformer, Design of Transformer(Output Equation of					utput Equation of		
Single-phase Transformer, Output Equation of Single-phase Transformer (Core-type), Output							
Equation of Transformer, Volt Per Turn of Winding, Choice of Flux Density, Choice of Current							
Density, Design	n of Core (Square Core, Stepped Core), D	esign	of Y	Yoke	, Ov	erall Dimensions,	
Design of Wind	lings, Resistance, Reactance Calculation,	No I	Load	Curr	ent o	of a Transformer,	

Transformer Lo	sses, Effects of Change in Frequency in Parameters of the Transformer, Optimum					
Design, Mecha	nical Forces					
Module 4						
Introduction, C	onstruction, Design Considerations, Specifications, Output Equation, Choice of	7				
Specific Loadir	ngs, Design of stator and Rotor, Magnetic Circuit Calculations, Calculation of					
Resistance and	Leakage Reactance, Performance Calculation					
Module 5						
Elementary mad	chines, Generated EMF, MMF of distributed ac winding, Rotating magnetic field,	7				
Torque in round	d rotor machine, Operation of basic machine types, Magnetic leakage in Rotating					
machines, Loss	es and Efficiency, Matching characteristics of electric machine and load, AC					
armature windir	ngs.					
Module 6	·					
Design of three	e phase induction motor, thermal design (Losses, heat removal and thermal	7				
equivalent circu	it)					
	Total	42				
	1					
Text	1) V. S. Nagarajan and V. Rajini, "Electrical Machine Design", Pearson Publishing	g, 2018.				
	2) J. Pyrhonen, T. Jokinen and V. Hrabovcova, "Design of Rotating Electrical Machines",					
Wiely, 2009.						
Reference	3) D. P. Kothari and I. J. Nagrath, "Electric Machines", McGrawHill, 2010.					

Elective-II Course Syllabus

Course Code	Course name	L	Т	Р	С	Year	Semester
ME33X	Micro-manufacturing	3	1	0	4	3 rd	6 th
Course objective:							
1. To introduce the o	lifferent methods of micro-fabric	cation.					
2. To study about the	e different tools of micro-fabrica	tion.					
Contents						No. of Lectures	
Module : 1							
Introduction to micro-manufacturing:definition, need/importance, applications, Size effect. Classification of micro-manufacturing processes						6	
Module : 2							-
Micro-machining processes: molecular dynamics at atomistic scale, diamond micro- machining and grinding, ultrasonic micro-machining, micro-EDM, laser beam micro- machining,						U	
Module : 3							
Micro-ECM, electron beam micro-machining, focused ion-beam techniques, Abrasive micro-finishing techniques. Micro-forming techniques: laser micro-bending, micro-deep drawing and micro-extrusion. Micro-welding and joining techniques.						0	
Module : 4							

Micro-fabrication using deposition techniques such as epitaxial, sputtering, chemical vapor deposition (CVD) techniques and Lithography (LIGA) based techniques.					
Module : 5					
Sensors and actuators for micro-manufacturing. Metrology for micro-manufacturing. Introduction to nano-scalemanufacturing					
	Total	38			
Text	 V.K. Jain, "Micromanufacturing Processes", Taylor and Francis, 20 J. McGeough, "Micromachining of Engineering Materials", Marcel I 				
Reference	1. K. F. Ehmann, "Micromanufacturing: International Assessment of Development", Springer, 2007.	Research and			
	2. P. Raichoudhury, "Handbook of Microlithography, Microma Microfabrication", 1997.	chining and			

Course Code	Course name	L	Т	P	C	Year	Semester
ME33X	Introduction to Composite Materials	3	1	0	4	3 rd	6 th
Course objective:							
1. Introduce to adva	nced composite materials and their a	oplicat	ions.				
2. Develop fundame layered materials	ental relationships for predicting th and structures.	e mec	hanic	al a	nd hy	ygrothermal	response of mult
3. Develop macro-m	nechanical relationships for lamina an	id lam	inated	d ma	terial	s.	
	Contents						No. of Lectures
Module : 1							
Classifications, tern	ninologies, manufacturing proces	ses (in t	orief)).		6
Module : 2							
orthotropic,transverse	alysis of lamina, Hooke's law ely isotropic and isotropic material theories of lamina. Micromechanica	s, 2D	Unic	lirect	ional		8
Module : 3							
Volume and mass fraction, density and void content –Evaluation of Elastic modulii, Ultimate strength of unidirectional lamina. Macro-mechanical analysis of laminates – Laminate code, Stress strain relations –In-plane and Flexural modulus,Hygrothermal effects. Failure Analysis and Design, Special cases of laminates, symmetric, cross ply, angle ply and antisymmetric laminates,						8	
Module : 4							
Stress strain relations Analysis and Design antisymmetric lamina	6						

Module : 5						
Failure criteria and failu failure of individual lan	8					
	Total	36				
Text	 R. M. Jones, Mechanics of Composite Materials, Scripta Book Co. B. D. Agarwal, and J. D. Broutman, "Analysis and Performance of Fiber Composites", New York, John Willey and Sons, 1990 					
Reference	 K. Kaw Arthur, "Mechanics of Composite Materials", CRC Press, 1997. P, K. Mallik, "Fiber reinforced composites : materials, manufacturing and design", New York-Marcel and Dekker, 1993 (2nd edition) 					

Course Code	Course name	L	Т	Р	С	Year	Semester
MAXXX	Scientific Computation	3	0	2	4	3 rd	6 th
	Course objective: The course provides an overview of the foundations of techniques needed to						
equation in engineeri	ng disciplines						
Торіс	Conter						No. of Lectures
Module-I	Errors; Iterative methods for no interpolation, spline interpolations; interpolation, quadrature methods, Ga	Num	erica	1 inte	egrat		08
Module-II	Initial value problems for ordinary differential equations - Euler method, Runge-Kutta methods, multi-step methods, predictor-corrector method, stability and convergence analysis;					08	
Module-III	Finite difference schemes for partial and implicit schemes	diffe	erenti	ial ec	quatio	ons - Explicit	09
Module-IV	Consistency, stability and converge method and von Neumann method), I			-		-	08
Module-V	Finite difference schemes for initial (FTCS, Backward Euler and Crank-N Lax Wendroff method, upwind schem	Vicol					09
						Total	42
Text	 D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed., AMS, 2002. G. D. Smith, Numerical Solutions of Partial Differential Equations, 3rd Ed Calrendorn Press, 1985. 						
References	 K. E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989. S. D. Conte and C. de Boor, Elementary Numerical Analysis - An Algorithmic Approach, McGraw-Hill, 1981. 						

Course Code	Course name	L	Т	Р	С	Year	Semest
							er
ME33X	Optimization Methods in Engineering	3	1	0	4	3 rd	6 th
Course objective:							
Optimization is	the process of obtaining the best result und	der g	given	circu	umsta	ances. In design, construct	ction and
maintenance of	any engineering system, engineers have to	take	man	y tec	hnolo	ogical and managerial dec	cisions at
several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize						naximize	
the desired benefit. The objective is to introduce number of optimization methods developed for solving different							
types of optimization problem.							

	Contents	No. of Lectur es				
Module 1						
Introduction a	and Basic Concepts: Historical Development; Engineering applications of Optimization;	8				
Art of Modeli	ng, Objective function; Constraints and Constraint surface; Formulation of design					
problems as	mathematical programming problems, Classification of optimization problems,					
Optimization to	echniques –classical and advanced techniques.					
Module 2						
Optimization	using Calculus: Stationary points; Functions of single and two variables; Global	8				
Optimum, Convexity and concavity of functions of one and two variables, Optimization of function of						
one variable an	nd multiple variables; Gradient vectors; Examples, Optimization of function of multiple					
variables subje	ect to equality constraints; Lagrangian function Optimization of function of multiple					
variables subje	ect to equality constraints; Hessian matrix formulation; Eigen values, Kuhn-Tucker					
Conditions; Ex	amples					
Module 3						
simplex tablea method; Duali analysis, Other	roblem; Examples, Motivation of simplex method, Simplex algorithm and construction of u; Simplex criterion; Minimization versus maximization problems, Revised simplex ty in LP; Primal-dual relations; Dual Simplex, method; Sensitivity or post optimality algorithms for solving LP problems –Karmarkar's projective scaling method					
Module 4	amming Applications: Use of software for solving linear optimization problems using	8				
0		0				
graphical and s Module 5	implex methods, Examples for transportation, structural and other optimization problems.					
	ramming:Sequential optimization; Representation of multistage decision process; Types	8				
•	ecision problems; Concept of sub optimization and the principle of optimality, Recursive	0				
e	ward and backward recursions; Computational procedure in dynamic programming(DP),					
•	s continuous dynamic programming; Multiple state variables; curse of dimensionality in					
Discrete versus DP	s continuous dynamic programming, multiple state variables, curse of dimensionanty m					
Dr	Total	38				
Text/	1) S. S. Rao, "Engineering Optimization: Theory and Practice", New Age Interna	tional P.				
Reference	Ltd.,New Delhi, 2000					
	2) H. A. Taha, "Operations Research: AnIntroduction", 5th Edition, Macmillan, New Yo	ork,1992.				
Reference	1) K. Deb, "Optimization for Engineering Design-Algorithms and Examples", Prentice	e-Hall of				
	India Pvt. Ltd., New Delhi, 1995					
	1					

Course Code	e	Course name	L	Т	Р	С	Year	Semester
ME33X		MEMS and NEMS	3	1	0	4	4 th	7 th
Course objectiv	Course objective: This course provides a rigorous grounding in the theory and practice of MEMS design, as well							
as ways of extending them to NEMS design. It will enable you to build MEMS by design not trial and error. It								
will also give you the analytical tools to explore the possibilities of NEMS.								
Topic		Contents					No. of Lectures	

Module-I	Overview and Introduction: New trends in Engineering and Science: Micro and Nano scale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of Micro and Nano electromechanical systems, Micro electromechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals	09
Module-II	MEMS Fabrication Technologies: Microsystems fabrication processes: Photolithography, Ion Implantation, Diffusion, Oxidation. Thin film depositions: LPCVD, Sputtering, Evaporation, Electroplating; Etching techniques: Dry and wet etching, electrochemical etching; Micromachining: Bulk Micromachining, Surface Micromachining, High Aspect-Ratio (LIGA and LIGA-like) Technology; Packaging: Microsystems packaging, Essential packaging technologies, Selection of packaging materials	09
Module-III	Micro Sensors: MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Micro sensors. Case study: Piezo-resistive pressure sensor	08
Module-IV	Micro Actuators: Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps. Case study: Comb drive actuators	08
Module-V	Nano-systems And Quantum Mechanics: Atomic Structures and Quantum Mechanics, Molecular and Nanostructure Dynamics: Schrödinger Equation and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits	08
Text	Total 1. Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata N 2. S. E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures, C	

Course Code	Course name	L	Т	P	С	Year	Semest
							er
ME33X	Power Electronics	3	1	0	4	3 rd	6 th
Course objectiv							
	f this course is to present the principles of						
·	cs circuits, power semiconductor devices,				-	•	
analysis and de	sign techniques for switch-mode converter	s usi	ng tl	ne bi	ick, l	boost, and buck-boost to	pologies.
							NI C
	Contents						No. of Lectur
							es
							Co
Module 1							
Introduction: (Concept of Power Electronics, Different typ	pes o	f pov	wer e	lectr	onics devices, converter	9
systems, areas o	f application, recent developments						
Device characte	eristics, protection and operation: Termin	al ch	aract	eristi	cs of	major power electronics	
devices, ratings,	protection, heating, cooling and mounting,	serie	s and	l para	allel o	operation, firing circuits	
Module 2							1
Phase controlle	d rectifiers: Principles of operation of phase	con	trolle	d, sin	ngle p	bhase & poly-phase, full-	9
wave & half-wa	ve converters with continuous and disconti	nuou	s loa	d cui	rents	and harmonic analysis.	
Effect of source	impedance on the performance of converter	rs, du	al co	onver	ters		
Module 3							1
Choppers: Prin	ciple of chopper operation, Control strategie	s, Ty	pes c	of cho	pper	circuits and steady state	8
analysis. Comm	utation in chopper circuits, Multiphase chop	per.					
Module 4							1

Inverters: Clas	sification of inverters, Single-phase and three-phase Voltage source Inverters, Methods	9				
of controlling	output voltage, frequency and phase, Reduction of harmonics in the inverter output					
voltage, Curren	t source inverters and operations.					
Module 5	· · · · · · · · · · · · · · · · · · ·					
AC Voltage Co	ontroller: Types of AC voltage controllers, Single phase voltage controllers, Sequence	10				
control of ac vo	ltage controllers, 3-phase AC voltage controller operation					
Cycloconverte	rs: Principles of cycloconverter operation, Methods of controlling output voltage and					
frequency in ca	uses of: Single phase to single phase, three phase to single phase, three phase to three					
phase operation						
	Total	45				
Text/	1) E. Maksimovic, "Fundamentals of Power Electronics", 2001					
Reference	Reference 2) N. Mohan, T. M. Undeland and W. P. Robbins, "Power Electronics: Converters, Application					
	and Design", Wiley, 1995.					

Elective-III Course Syllabus

Course Code	Course name	L	Т	Р	С	Year	Semester
ME42X	Mechanical Vibrations	3	1	0	4	4 th	7 th
 Course objective: 1. To understand the one and multi-degree-of-freedom systems. 2. To find the natural frequency and modes of vibration. 3. To understand the use of vibration in practical problems and avoid the excessive vibration. 							ration.
							N. C
Contents						No. of Lectures	
Module 1							
Introduction: Overview	w of the course, practical applicat	ions a	nd re	searc	h tre	ends, Harmonic	8
and periodic motions, vi	bration terminology						
Single-DOF Free Vibra	tions: Vibration model, Equation	of mot	ion-N	latura	al Fre	equency, Energy	
method, Rayleigh method, Principle of virtual work, Damping models.							
Module 2							
Single-DOF Free Vibra	ations: Viscously damped free v	vibratio	on, S	Speci	al ca	ses: oscillatory,	8
non-oscillatory and cr	itically damped motions. Log	garithn	nic o	lecre	ment	, Experimental	
determination of dampin	g coefficient.						
Single-DOF Forced Vi	brations: Forced harmonic vib	ration,	Mag	gnific	atior	n factor, Rotor	
unbalance, Transmissibi	lity, Vibration Isolation, Equiva	alent v	iscou	is da	mpin	g, Sharpness of	
resonance.							
Module 3							
Two-DOF Free Vibrati	ons: Generalized and Principal co	oordin	ates,	deriv	ation	of equations of	10
motion, Lagrange's equ	ation, Coordinate coupling, Force	ed Har	moni	c vib	ratio	n	
Vibration Absorber: Tuned absorber, determination of mass ratio, Tuned and damped						ed and damped	
absorber, unturned visco	us damper.						
Multi-DOF: Derivation of equations of motion, influence coefficient method, Properties of							
vibrating systems: flexi	bility and stiffness matrices, reci	iprocit	y the	orem	i, M	Iodal analysis :	
undamped, Modal analy	sis: damped.						

Module 4		
method, Holzer metho	ral frequencies : Rayleigh method, Stodala method, Matrix iteration od and Dunkerley's method Simple systems with one or two rotor masses, Multi-DOF systems-transfer	8
	d system, Branched system	
Module 5		
vibration of rods, Tran Transverse vibration of Continuous systems :	: closed form solutions: Vibration of strings, Longitudinal and torsional asverse vibration of beams: equations of motion and boundary conditions, of beams: natural frequencies and mode shapes Approximate form solutions: Rayleigh's energy method, Rayleigh-Ritz odes and Galerkin's method	8
	Total	
		42
Text	 L. Meirovitch, "Elements of Vibration Analysis", McGraw Hill, 1986. S. S. Rao, "Mechanical Vibrations", 5th Ed., Prentice Hall Inter 	Second edition,

Course Code	Course name	L	Т	Р	С	Year	Semester
ME42X	Computer Integrated Manufacturing	3	1	0	4	4 th	7 th

Course objective:

1. Students will employ engineering and scientific concepts in the solution of engineering design problems.

2. Students will develop problem-solving skills and apply their knowledge of research and design to create solutions to various challenges.

Contents	No. of Lectures
Module : 1	
Introduction to CAD and CAM, Manufacturing Planning and control, CIM concepts, Computerised elements of CIM system, Types of manufacturing, Manufacturing models, Manufacturing Control	10
Module : 2	I
Review of automation and control technologies. Material Handling technologies. Data Communication technologies. Automatic Data Acquisition technologies. Database Management technologies.	10
Module : 3	
Group Technology & Cellular Manufacturing Systems, Flexible Manufacturing Systems, Production flow Analysis, Transfer lines, Machine cell design and layout, Automated Assembly Systems. Quality Control Systems. Computer-Aided Process Planning. Concurrent Engineering. Production Planning and Control Systems.	10

Module : 4						
Levels of Automation, L	8					
	Total	38				
Text	xt1. M. P. Groover, "Automation production systems, and computer-integrated manufacturing", second edition, Prentice-Hall of India, New Delhi, 2001.					
	 P. Radhakrishnan, S. Subramanyan and V.Raju, "CAD/CAM/CIM", 2nd Edition New Age International (P) Ltd, New Delhi, 2000. 					
Reference	Reference 1. S. K. Vajpayee, "Principles of computer-integrated manufacturing", Prentice-Hall of India, New Delhi, 2005					

Course Code	Course name	L	Т	Р	С	Year	Semester
ME42X	Introduction to Data Science	3	1	0	4	4^{th}	7 th
Course Objective: The goal of this course is to provide students with an introduction to the mathematical and							
algorithmic foundations	of data science, including machine	learr	ning,	high	-dime	ensional g	geometry, and analysis of
large networks. The goal of this course to improve decision making power to the students through the analysis of							
data.	*		01				

Topic	Contents	No. of Lectures				
Module 1	Introduction to Data Science: Big Data and Data Science	5				
	hype, Datafication, Current landscape of perspectives- Skill sets needed.					
Module 2	Statistical Inference, Exploratory Data Analysis and the Data Science Process,	7				
Module 3	10					
Module 4	10					
Module 5	Mining Social-Network Graphs, Data Visualization, Data Science and Ethical Issues.	10				
	Total	42				
Text Books	 Cathy O'Neil and Rachel Schutt. Doing Data Scie From The Frontline.O'Reilly. 2014. John D. Kelleher, Brendan Tierney, Data Science, MIT Pre 	-				
Reference Books	 1.Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets, Cambridge University Press, 2014. 2.Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science, Cambridge University Press, 2019. 3.Mohammed J. Zaki and Wagner Miera Jr. Data Mining and Analysis: Fundamental Conceptsand Algorithms, Cambridge University Press, 2014. 4.Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques, Morgan Kaufmann. 2011. 					

Course	Course name	L	Т	Р	С	Year	Semester
Code							

ME42X	Reinforcement Learning	3	1	0	4	4 th	7 th
Course Objective: To introduce the students with basics of reinforcement learning reinforcement							
learning algorithms, dynamic programming and its usage in RL and state of the art applications in							
RL							

Торіс	Contents	No. of Lectures
Module 1	Introduction to Reinforcement Learning Problem:Reinforcement Learning, Elements of Reinforcement Learning, Limitations andScope, An Extended Example: Tic-Tac-Toe, History of Reinforcement LearningMulti-arm Bandits: An n-Armed Bandit Problem, Action-Value Methods,Incremental Implementation, Tracking a Nonstationary Problem, OptimisticInitial Values, Upper-Confidence-Bound Action Selection, Gradient Bandits,Associative Search (Contextual Bandits).	8
Module 2	 Finite Markov Decision Processes: The Agent–Environment Interface, Goals and Rewards, Returns, Unified Notation for Episodic and Continuing Tasks, The Markov Property, Markov Decision Processes, Value Functions, Optimal Value Functions, Optimality and Approximation. Dynamic Programming: Policy Evaluation, Policy Improvement, Policy Iteration, Value Iteration, 	8
Module 3	Dynamic Programming: Asynchronous Dynamic Programming, GeneralizedPolicy Iteration, Efficiency of Dynamic Programming.Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo Estimation ofAction Values, Monte Carlo Control, Monte Carlo Control without ExploringStarts, Off-policy Prediction via Importance Sampling, IncrementalImplementation, Off-Policy Monte Carlo Control, Importance Sampling onTruncated Returns.	8
Module 4	Temporal-Difference Learning:TD Prediction, Advantages of TD PredictionMethods, Optimality of TD(0), Sarsa:On-Policy TD Control, Q-Learning:Off-Policy TD Control, Games.'Policy Approximation:Actor–Critic Methods, Eligibility Traces for Actor–Critic Methods, R-Learning and the Average-Reward Setting,	9
Module 5	 Policy Approximation: Vanilla policy gradient method, REINFORCE and TROP algorithms. State of the art applications of RL: Latest practical application of RL: Atari, Go, robotic applications and NLP. 	8
	Total	41
Text Books	 1.RS Sutton Reinforcement Learning: An Introduction – Stanford University 2.Hands-On Reinforcement Learning with Python: Master Reinforcement and Dee Reinforcement Learning Using OpenAI Gym and TensorFlow. 	p
Reference Books	1. Richard S. Sutton and Andrew G. BartoReinforcement Learning: An Introduction (Introduction (Adaptive Computation and Machine Learning series) Kindle Edition	

Course Code	Course name	L	Т	Р	С	Year	Semester
ME401	Electro mechanics and magnetic propulsion	3	1	0	4	4 th	7 th
Course objective:							
The objective of the	e course is to provide fundamental ki	nowl	edge	in ele	ectro	mechanics.	
Contents						No. of Lectures	

Module : 1						
	nagnetics: Maxwell's Equations, Magnetic Circuits and Induction, chanical energy conversion;	6				
Module : 2						
	ng Machines: Types of electrical machines, generalized theory of Reference frame theory, space vector formulation;	8				
Module : 3						
Unbalanced Magnetic Pull: definition, cause, effect and remedies, different winding scheme to reduce unbalanced magnetic pull; Magnetic Bearings: introduction, principles of magnetic suspension, mathematical modeling, hardware components which includes power amplifiers, sensors, actuators, controllers.						
Module : 4						
Self-bearing machine: Basic principles, different methods of producing controllable force, introduction to self-bearing machine and control techniques.						
Module : 5	Module : 5					
Solution of Laplace's and Poisson's equation, coupled circuit equation and field equation; Coupled rotordynamics combining electrical dynamics and mechanical dynamics: Coupled dynamics of electrical machines, dynamics and control of rotors on magnetic bearings; System fault analysis using electromechanical devices; Magnetostriction.						
	Total	36				
Text	Fext 1. S. J. Chapman, "Electric Machinery Fundamentals", McGraw Hills, Fifth Edition, 2011.					
	2. Gerhard Schweitzer and Eric Maslen, "Magnetic Bearings: Theory, Design and Application to Rotating Machinery", Springer, 2009.					
Reference	1 Julya Pyrhonen Tanani Jokinen and Valeria Hraboycova "Design of Rotating					

Course Code	Course name	L	Т	Р	С	Year	Semester	
ME401	AUTOMOBILE	3	1	0	4	4 th	7 th	
	ENGINEERING							
 To understat To understat 	 To understand the basic concept and component of automobile. To understand the power generation system in automobile. 							
							No. of Lectures	
Module 1							Lectures	

Introduction: Introduct	ion, Basic concepts of Automobile Engineering and general configuration of	7
an automobile, Power an	nd Torque characteristics. Rolling, air and gradient resistance. Tractive effort.	
Gear Box. Gear ratio det	termination.	
Transmission System:	Requirements. Clutches. Torque converters. Over Drive and free wheel,	
Universal joint.		
Module 2		
Differential Gear Mecha	nism of Rear Axle. Automatic transmission, Steering and Front Axle.	7
Castor Angle, wheel ca Under steer and Over ste	amber & Toe-in, Toe-out etc Steering geometry. Ackerman mechanism,	
Braking system: Gene	eral requirements, Road, tyre adhesion, weight transfer, Braking ratio. raulic brakes. Vacuum and air brakes. Thermal aspects.	
Chasis and Suspension	System: Loads on the frame, Strength and stiffness, Independent front &	
	dicular arm type, Parallel arm type, Dead axle suspension system, Live axis suspension & shock absorbers.	
Module 3		
• • • •	es of starting motors, generator & regulators, lighting system, Ignition system,	7
Horn, Battery etc.	Negel & Detrol ushiels quaters such as Evel Injection Dump. Injector & Evel	
	Diesel & Petrol vehicle system such as Fuel Injection Pump, Injector & Fuel	
Pump, Carburetor etc. M Module 4	IPFI.	
Emission standards and	d pollution control :	7
standards, environmenta	omotive vehicles-Bharat I and II, Euro-I and Euro-II norms, fuel quality I management systems for automotive vehicles, catalytic converters, fuel ends in automotive engine efficiency and emission control.	
Maintenance system: Preventive maintenance	, break down maintenance and over hauling.	
Treventive maintenance,	Total	28
Text/ Reference	1. Kripal Singh, "Automobile Engineering, Vol.1 & Vol.2.", Standard distributer	publisher and
	 K. K. Jain and R. B. Asthana, "Automobile Engineering", 1st Ed., Tata 2017. 	a Mcgraw Hill,

Open electives

Course Co	de	Course name	L	Т	Р	С	Year	Semester
XX	XXX	Quality Control	3	1	0	4	4^{th}	7 th
Course objective:								
1. To understand the philosophy and basic concepts of quality improvement in industry or organization.								
2. To understand the quality control in specified limit.								
3.	To understan	nd the principle of acceptance of sar	nple.					
4. To understand the defect diagnosis process of the samples.								
		Contents						No. of Lectures
Module 1								

Introduction: Introduction, Concept and evaluation of quality control. Measurement & Metrology, precision vs accuracy. Process capability, standardization& Interchange ability.8						
Inspection and Gauges: Inspection methods. Types of Gauges. Limits Fits and Tolerances. Non-						
Destructive Testing& Evaluation.						
Module 2						
Control charts for SQC: Statistical Quality Control (SQC). Control charts for variables suchas X,	8					
R charts and control charts for attributes such as p-chart, c-chart. Construction & use of thecontrol						
charts.						
Process capability.						
Acceptance Sampling for SQC: Introduction, Principle of acceptance sampling. Producer's and						
consumer's risk. Sampling plans - single, double & sequential. Sampling by attributes and variables						
Module 3						
Reliability: Introduction to reliability, bath-tub curve. Life expectancy. Reliability based design.	8					
Series & Parallel System.						
Defect Diagnosis and prevention : Basic causes of failure, curve/control of failure.						
MTBF. Maintainability, Condition monitoring and diagnostic techniques.						
Module 4						
Value Engineering: Elements of value analysis, Techniques.	8					
TQM: Basic Concept, Quality control, Quality Assurance and Quality Management and						
TotalQuality Management. Implementation of TQM. ISO 9000 and its series, Zero defect.						
Taguchimethod, Six Sigma concepts.						
Module 5						
Other Factors in Quality : Human Factors such as attitude and errors. Material-Quality, Qualitycircles, Quality in sales & service.	8					
Total	40					
Text 1. D. C. Montgomery, "Introduction to Statistical Quality Control", 6th E	d., John Wiley &					
Sons, Inc, 2009.						
2. I. Kaoru, "Introduction to Quality Control", springer, 1989						
Reference						

Course Code	Course name	L	Т	Р	С	Year	Semester
XXXXX	Advanced Robotics	3	1	0	4	4 th	7 th
Course objective:							
1. To understan	nd the philosophy and basic concep	ts of	qualit	ty im	prov	ement in industry or o	organization.
2. To understan	nd the quality control in specified li	mit.					
3. To understan	nd the principle of acceptance of sa	mple.					
4. To understan	nd the defect diagnosis process of the	ne sar	nples				
	Contents						No. of Lectures
Module 1							
CONTROL SYSTEM	IS AND COMPONENTS: Ba	sic	Cont	rol	Syste	ems Concepts and	8
Models,Controllers, Cor	Models, Controllers, Control System Analysis, Robot Activation and Feedback Components, Power						
Transmission Systems, Robot Joint Control Design.							
ROBOT END EFFECTORS: Types, Mechanical Grippers and Other types, Tools as End							
Effectors, The Robot/End Effector Interface, Considerations in Gripper Selection and Design							

Module 2	
MACHINE VISION: Introduction, The Sensing and Digitizing function, Image processing and	8
Analysis, Trainig and Vision Systems, Robotic Applications.	
Module 3	
ROBOT PROGRAMMING: Programming methods, Robot program as a path in space, Motion Interpolation, WAIT, SGNAL, DELAY Commands, Branching	8
Module 4	
ROBOT LANGUAGES : The Textual Robot languages, Generations of Robot programming	10
languages, Robot language Structures, Constants, Variables, and other data Objects, Motion	
Commands, program Control and Subroutines	
Module 5	
ROBOT APPLICATIONS IN MANUFCATURING: Material Transfer And Machine	8
Loading / Unloading, An Approach for Implementing Robotics	
FUTURE APPLICATIONS: Characteristics of Future Robot Tasks, Future manufacturing	
Applications, Hazardous and Inaccessible Nonmanufacturing Environments Total	42

 Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey Industrial Robotics: Technology, Programming, and Applications, 1stedition, McGraw-Hill International Edition, 1986
 K.S.Fu, R.C Gonzalez, C.S.G.Lee, ROBOTICS, Control, Sensing, Vision and Intelligence, 1stedition, McGraw-Hill International Edition, 1987

Course Code	Course name	L	Т	Р	С	Year	Semester
XXXXX	Material Characterization	3	1	0	4	4 th	7 th
	Methods						
Course objective:							
1. Introduce basic t	echniques for materials characterizat	ion.					
2. Introduce the wo	orking principles and instrumentation	of main	n tech	nniqu	les.		
3. Introduce the int	erpretation of the characterization te	chnique	outp	uts.			
4. Observe operation	ons of characterization equipment.						
Topics	Contents						No. of Lectures
Module : 1							
Elements of Crystal	lography, Principles of X-ray diff	Fraction	X-1	av e	min	nent and	10
•				•	• •		
data analysis; associated techniques in X-ray spectroscopy, Fundamentals of elemental analysis.						iementai	
anary 515.							
Module : 2							
Optical/Electron N	Aicroscopy Techniques, Specimen	prep	aratic	on tec	chnia	ues for	10
•	n microscopy in metallurgy. Eler				-		
-	ation, inclusion analysis, Image and		-			· ···· · · · · · · · · · · · · · · · ·	
or and other according	anon, merusion anarysis, intage an						

Module : 3						
Electron diffraction, SE analysis. Neutron Sca reflectometry.	10					
Module : 4						
Thermal Analysis: Princ. TMA, DMA, etc.	Thermal Analysis: Principles and applications of thermal analysis; DTA, DSC, TGA, TMA, DMA, etc.					
Module : 5						
Mechanical Property c related to Tensile, com Deformation; Superplast	10					
	Total	48				
Text Reference	 "Materials characterization", Vol. 10, ASM hand book, 1997. B. D. Cullitey, "Elements of X-ray diffraction", Addison-Wesely, 1968. ASTM handbook, vol. 3, 1997. 					
	2. R. F. Speyer, "Thermal Analysis of Materials", Marcel Decker, 1994					

Course Code	Course name	L	Т	Ρ	С	Year	Semester	
XXXXX	Physics of Manufacturing	3	1	0	4	4 th	7 th	
	Processes							
Course objective:	Course objective:							
1. This course gives	an introduction to production	met	thods	s an	d m	anufacturing technologie	es used in	
engineering.								
2. The focus is given on the understanding of physical phenomena underlying the processes, the relation								
between materials/manufacturing processes.								
Topics	Contents						No. of	
							Lectures	
Module : 1								
Stress and strain beha	vior of materials, plastic and ta	nger	nt mo	odulı	us,	work hardening, plastic	8	
instability in tensile test, empirical stress-strain equations, effect of pressure, strain-rate and								
temperature.								
Module : 2								

•	tensor, eigenvalues, decomposition into deviatoric and hydrostatic ral stresses, analysis of strain and strain rates, stress equilibrium and e stress rates.	8			
Module : 3					
•	of yielding, isotropic and anisotropic hardening, rules of plastic flow, Levy- ussequations, anisotropic flow rule, Hill's 1948 and 1979 yield criteria for	8			
Module : 4					
extrusion, forging.	m and its application in deformation processes like rolling, wire drawing, Lower bound theorem with a few applications. Slab method and its nation process like symmetric/asymmetric rolling, forging, wire drawing	8			
Module : 5					
in metal forming. Hea	ending. Analysis of autofrettage. Theory of slip line field and its application at transfer analysisin deformation processes with examples from rolling ding/processing. Workability and dynamic materials model.	8			
	Total	40			
Text	 J. Chakrabarty, "Theory of plasticity", Elsevier Butterworth-Heineman Company, Singapore, 2006. B. L. Juneja, "Fundamentals of metal forming processes", New Age Internationa New Delhi, 2007. 				
Reference	 P. M. Dixit and U. S. Dixit, "Modelling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods", Springer, London, 2008. 				
	. W. F. Hosford and R. M. Caddell, "Metal forming: mechanics and metallurgy", Cambridge University Press, London, 2011.				