Indian Institute of Information Technology Bhagalpur Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus Semester-II

Curricula:

Course Code	Course name	L	Т	Р	С
MA102	Engineering Mathematics – II	3	1	0	4
CS102	Data Structures and Algorithms	3	0	0	3
EC102	Digital Design	3	0	0	3
EC104	Semiconductor Devices and Circuits	3	0	0	3
ME102	Engineering Mechanics	3	1	0	4
CS112	Data Structure and Algorithm LAB	0	0	3	2
EC113	Digital Design LAB	0	0	3	2
EC114	Semiconductor Devices and Circuits LAB	0	0	3	2
NSS	National Service Scheme	0	0	0	0

Syllabus:

Course Code	Course Name	L	Т	Р	С	Year	Semester
MA102	Engineering Mathematics II	3	1	0	4		
Course Obj	ective:						
Topic							Hour
Module I	Vector functions of one variable – continuity, different Functions of several variables - continuity, partial degradient, differentiability, chain rule; tangent planes Concavity-Convexity, Maxima and minima, Saddle P	erivat s and	ives, o	direc [.] ials.	tional	derivatives,	9
Module II	Repeated and Multiple integrals with applications to Inertia, change of variables, Vector Fields, Line and					a, Moments of	8
Module III	Green's, Gauss' and Stokes' theorems and their app First order differential equations - exact differential Bernoulli equations, existence and uniqueness theo	l equa	ntions		_	g factors,	8
Module IV	Higher-order linear differential equations, solutions homogeneous equations, method of variation of pa Series solutions of linear differential equations. Legon polynomials. Bessel equation and Bessel functions of	rame endre	ters. e equa	ation	and L	egendre	10
Module V	Systems of first-order equations, two-dimensional l plane, critical points, stability.	inear	autor	nomo	us sy:	stem, phase	8
		•	•			Total	43

Text	 Thomas Calculus; Maurice D Weir, Joel Hass, ; 13th, Pearson India Education Services Pvt.Ltd; 2008. Advanced Engineering Mathematics; Erwin Kreyszig, Herbert Kreyszig, Edward J Norminton; 10th, Wiley India Pvt. Ltd.; 2017. Elementary Differential Equations and Boundary Value Problems; William E Boyce, Richard C DiPrima, ; 9th, Wiley India Pvt. Ltd.; 2009.
Reference	 Calculus Early Transcendentals; James Stewart, , ; 7th, Cengage; 2012. A Course in Multivariable Calculus and Analysis; Sudhir R Ghorpade, Balmohan V Limaye, ; 1st, Springer; 2018. Differential Equations; Shepley L Ross, Richard C DiPrima, ; 3rd, Wiley India Pvt. Ltd.; 2004.

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS102	Data Structures and Algorithms	3	0	0	3	1 st	2 nd
the algorithm to m	A good algorithm usually comes together nanipulate the data efficiently. In this cour	se, s			_		
structures that are	e used in various computational problems.						
Topic							Hour
Module I	Performance of algorithms: space and tim lower and upper bounds.	ne co	mple	exity	, asy	mptotics,	7
Module II	Fundamental Data structures: arrays, link queues, binary trees, tree traversals.	ed lis	sts, n	natri	ces,	stacks,	7
Module III	Igorithms for sorting and searching: linear search, binary search, isertion-sort, selection sort, bubble sort, quicksort, mergesort, eapsort; Priority Queues: lists, heaps.					7	
Module IV	Hashing: separate chaining, linear probing Search Trees: binary search trees, B-trees		adra	tic p	robir	ng;	6
Module V	Graphs: Data Structures for Graphs, Bread Search.	dth F	irst S	Seard	ch, D	epth First	8
						Total	35
	 Data Structures with C; Seymour Lipsch Limited; 2011. Introduction to Algorithms; Thomas H O Brd, PHI Learning Private Limited; 2018. 						, ,
	1. Fundamentals of Data Structures in C; I 2nd, Universities Press (India) Private Lim				, Sart	aj Sahni, Sus	san Anderson;

Course Code	Course name	L	Τ	Р	С	Year	Semester
-------------	-------------	---	---	---	---	------	----------

EC102	Digital Design 3	0 0	3	1 st	2 nd
system abstra	re: The main objective of this course is to intections such as digital representations of	informa	ation,	logic gates,	
Topic	uits, Boolean algebra, state elements and fin Contents	ne state	macı	iine (FSIVIS).	No. of Lectures
Module-I	Number Systems and Codes, Positional number systems; Method Binary, octal and hexadecimal arithmetic numbers; Fixed and floating point numbers codes; Gray codes; Error detection and check codes and Hamming code	hods of ; Represers; Bir	base sentat ary co	conversions; ion of signed oded decimal	06
Module-II	Combinatorial Logic Systems: Definition table; Basic logic operation and logic gas Switching Functions: Basic postulates and Boolean algebra; Standard representation and POS forms; Simplification of switching Quine-McCluskey tabular methods; Synthecircuits	ates; Bo I fundar on of lo ing fund	olean nenta gic fu ctions	Algebra and I theorems of nctions - SOP - K-map and	10
Module-III	Logic Gates, Two-level realizations using NAND-NAND and NOR-NOR structures; I bit adder, Multiplexers, DE-multiplexers, ALU; Multiplexer-based realization of K-m design using multiplexers and gates	Multifur Decod	iction ers, P	gates, Multi- rogrammable	09
Module-IV	Sequential Logic systems: Latches and Flip races; Analysis of state machines using D Synchronous and Asynchronous count generator using flip-flops; Design of state assignment, transition/excitation table equations, logic realization; Design examples	10			
Module-V	Memory:Read-only memory, read/write in TTL, MOS, interfacing between logic fam PLA.	•		•	07
Total	•				42
Text	 M. Morris Mano, Digital Logic and Cor 2009. R. P. Jain, Modern Digital Electronics, 	·			
Reference	1. R. J. Tocci, N. S. Wisdmer and G. L. Mo Pearson Education, 10 th edition, 2011		tal Sy	stems: Princip	le and Applications,

Course Code	Course name	L	Т	Р	С	Year	Semester
EC104	Semiconductor Devices & Circuits	3	0	0	6	1 st	2 nd

Course objective: The main objective of this course is to study semiconductor materials and transport mechanism, semiconductor diodes, bipolar transistors, field effect devices and transistors. More particularly, the course objectives are to:

- 1. Introduce students to the physics of semiconductors and the inner working of semiconductor devices.
- 2. Provide students the insight useful for understanding new semiconductor devices and technologies.

Topic	Contents	No. of Lectures
Module-I	Introduction of semiconductors, equilibrium and carrier concentration in semiconductors; Bond model and band model of intrinsic semiconductors, Density of state, Fermi-dirac distribution function; Carrier transport in semiconductors, Mobilty, resistivity and conductivity; Excess carrier, method of generating excess carrier inside extrinsic semiconductors. Doping and diffusion process.	08
Module-II	P-N Junction: Simplified device structure and physical operation of diode; depletion region, forward and reverse-bias, depletion and diffusion capacitances, switching characteristics; breakdown mechanisms; Zener diode, Tunnel diode; Diode Applications: Half Wave and Full Wave Rectifier, Clippers and Clampers, and Zener Regulators	09
Module-III	Simplified device structure and physical operation of BJT, I-V characteristics of BJT, carrier distribution; current gain, transit time, secondary effects; SPICE model. Metal-semiconductor junctions, Breakdown of the junction with the non-impact and impact ionization, $\beta\text{-I}_{\text{C}}$ characteristics curve, variation of α with I $_{\text{c}}$; Small signal equivalent circuit, BJT Amplifiers: Transistor Configuration analysis, Common base, Common emitter and Common collector	08
Module-IV	MOS structure, Energy band diagrams, Flat-band condition and flat-band voltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, MOS Q-V Characteristics.	08
Module-V	Introduction to Field effect transistors, Construction and characteristics of Junction Field effect transistors; N-channel and p-channel JFET characteristics; MOSFETS: Enhancement type and depletion type of MOSFET, Basic Operation and Characteristics; N-channel and P-channel MOSFET characteristics	09
Total	,	42

Text	 R. F. Pierret, Semiconductor Device Fundamentals, Pearson Education, 1stedition, 2006. B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, Pearson Education, 7th edition, 2015.
Reference	1. J. Singh, Semiconductor Devices - Basic Principles, John Wiley & Sons Inc., 1 st edition, 2001.

Course Code	Course name	L	Т	P	С	Year	Semester
ME102	Engineering Mechanics	3	1	0	4	1 st	2 nd

Course objective:

- 1. The primary purpose of the study of engineering mechanics is to develop the capacity to predict the effects of force and motion while carrying out the creative design functions of engineering.
- 2. This capacity requires more than a mere knowledge of the physical and mathematical principles of mechanics.
- 3. The ability to visualize physical configurations in terms of real materials, actual constraints, and the practical limitations which govern the behaviour of machines and structures.

	Contents	No. of Lectures
Module : 1		
Equivalent force equilibrium equat	systems; free-body diagrams; degrees of freedom; ions;	10
Module : 2		
Analysis of deter	rminate trusses and frames; properties of surfaces	8
Module : 3		
Centroids and co	entres of gravity, Moment of Inertia; Virtual work	10
Module : 4		
-	tion; work-energy and impulse-momentum principles; dinates; Lagrangian mechanics.	10
Module : 5		
	and kinetics of rigid bodies including work-energy and um principles; single degree of freedom rigid body	10
	Total	48
Text	H. Shames, "Engineering Mechanics: Statics and Dy	namics", 4th Ed., PHI, 2002.

	2. F. P. Beer and E. R. Johnston, "Vector Mechanics for Engineers, Vol I – Statics",
	Vol II -Dynamics, 3rd Ed., Tata McGraw Hill, 2000.
Reference	1. S. Timoshenko, D.H. Young, J.V. Rao and S. Pat, "Engineering Mechanics",
	Paperback –1 Jul 2017.
	2. 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics, Vol I -Statics, Vol II
	–Dynamics", 5th Ed., John Wiley, 2002.4).