INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus

Semester -V

Course Code	Course name	L	Т	Ρ	С	Year	Semester	Semester Total Credit
EC301	Digital Signal Processing	3	0	0	3			
EC302	Control Systems	3	1	0	4			
ME301	Dynamics of Machinery	3	0	0	3			
ME302	Sensors and Actuators	3	0	0	3			
CS303	Artificial Intelligence	3	0	2	4	3	5	25
EC304	IOT and Embedded System	3	0	0	3			
EC311	Digital Signal Processing Lab	0	0	3	2			
EC312	IOT and Embedded System LAB	0	0	3	2			
SAI-II	Society Academia Industry Internship – II	0	0	0	1			

Course Code	Course name	L	Т	Р	С	Year	Semester
EC301	Digital Signal Processing	3	0	0	3	3 rd	5 th
principles of d transforms to f frequency char	tive: The main objectives of the course iscrete-time signal analysis to perform inite difference equations, apply the pr racteristics of discrete-time signals and se computer programming tools to proc	vari incip 1 sys	ous s les o tems	ignal f Fou , app	ope rier ly th	rations, apply transform anal e principles of	the principles of z- ysis to describe the f signal analysis to
Торіс	Conter						No. of Lectures
Module-I	Review of discrete time signals, system signals, systems and their classification systems: impulse response, difference transfer function, DTFT, DTFS and Z	on; A e eq	naly: uatio	sis of n, fre	disc	rete time LTI	08
Module-II	Ideal filter characteristics, low-pass, stop filters, Paley-Wiener criterion, comb filters, Butterworth filter, che minimum phase, maximum phase and	digit bysł	al re nev f	sona ilter,	tors, inve	notch filters, erse systems,	08
Module-III	Signal flow graph representation, basystems (direct, parallel, cascade and theorem, ladder and lattice structure windows, frequency sampling, Remezerror methods; Design of IIR filters u transformation and frequency transformation.	poly es; E algo sing	phas Desig prithn impu	e for n of n and	ms), FIR leas	transposition filters using t mean square	09
Module-IV	Computational problem, DFT relatio transform (FFT) algorithms (radix-2, in-frequency), Goertzel algorithm, lin	deci	matic	on-in-	-time	, decimation-	08
Module-V	Finite word-length effects in digital representation of numbers, qu representations, finite word-leng representation, round-off noise, SQN Introduction to multi-rate signal proce poly-phase decomposition.	antiz gth IR co	ation effe ompu	n ects tatio	oise in n an	in signal coefficient d limit cycle;	09
	· - · · •					Total	42
Text	 S. K. Mitra, Digital Signal Proc Hill, 2nd edition, 2001. J. G. Proakis and D. G. Manolak and Applications, PHI, 4th editio 	is, D n, 20	oigita 107.	l Sig	nal P	rocessing: Prir	nciples, Algorithms
Reference	1. A. V. Oppenheim and R. W. edition, 2004.	Shafe	er, \overline{D}	iscre	ete-T	ime Signal \overline{Pr}	ocessing; PHI, 2 nd

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC302	Control Systems	3	1	0	4	3 rd	5 th	
	-	-						
•	Course objective: To provide the basic skills required to understand, develop, an engineering applications involving control strategies. To lay the foundations of control							
	practice in modern Experimental set ups.							
Topic	Contents						No. of Lectures	
Module-1	systems, Derivation of Transfer Mason's Gain Formula; Feed	Basic Concepts of Control Systems: Open loop and closed loop systems, Derivation of Transfer functions, Signal flow Graphs, Mason's Gain Formula; Feedback characteristics of Control Systems; Time response of first order and Second order systems,						
Module-2	stability criterion to linear feedb shifting the origin in s-plane; Ro Systems with transportation lag. and zeros on Root locus; Fr correlation between Time and Fr	Routh-Hurwitz stability criterion, Application of the Routh stability criterion to linear feedback system, Relative stability by shifting the origin in s-plane; Root locus concepts, Root contours, Systems with transportation lag. Effect of adding open loop poles and zeros on Root locus; Frequency domain specifications, correlation between Time and Frequency Response with respect to second order system, Polar plots, Bode plot, Determination of Gain						
Module-3	Stability in frequency domain: stability criterion, Application linear feedback system. Consta Nichol's chart; Controllers: Con and Integral Control actions, P, Nichols method of tuning PID co	of Ny nt M ncept PD,	yquis -circl of P PI, P	t sta es, C ropo	bility Const rtion	v criterion for ant N-Circles, al, Derivative	08	
Module-4	Mapping between the S-Plane ar Complementary Strips, Cons damping ratio loci, Stability Ana	Nichols method of tuning PID controllersMapping between the S-Plane and the Z-Plane, Primary strips and Complementary Strips, Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane. Jury stability test, Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion						
Module-5	frequency response method, Bil procedure in the w-plane, Lead,	Transformation and Routh Stability Criterion. Transient and steady State Response Analysis, Design based on the frequency response method, Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PI, PD, and PID controllers.						
Text	 I. G. Nagarath, M. Gopal, edition, 2012. M. Gopal, Digital Control Education, 2nd edition, 2003 	and		-				
Reference	1. B. C. Kuo, Automatic Control 2. K. Ogata, Modern Control 2015.	ol Sy.						

Code	Course name	L	Т	Р	С	Year	Semester
ME301	Dynamics of Machinery	3	0	2	4	3 rd	6 th
Course obj		3	U	2	4	5	U
1. 2. 3. 4. 5.	To understand the force-motion relati To understand the importance of bala To understand the mechanism of cont To understand the importance of gove To understand the avoiding of undesin	ncing on rolling o rnor on	rotat f stab contre	ing a oility olling	nd re by gy g of f	ciprocati yroscope. uels on v	ng masses.
	Contents						No. of Lectures
Module 1							
Static force	e analysis: Introduction, Introduction:	Static ec	uilib	rium	. Equ	ilibrium	8
	hree force members. Members with tw		•		-		
	ce member, Force convention, Free-			-	-		
	virtual works, Friction in mechanisms	•	C	, -		. ,	
Module 2							
Dynamics	force analysis: D'Alembert's princip	e. Inerti	a for	ce. ii	nertia	toraue.	8
•	price analysis of four-bar mechanism					•	_
J	J						
Dynamicall	y equivalent systems. Turning mor	nent dia					
•	y equivalent systems. Turning mor of Energy. Determination of size of fl		gram				
Fluctuation		wheels.	gram	s an	d fly	ywheels.	
Fluctuation BALANCI	of Energy. Determination of size of fl	wheels. Balancing	gram g of	s an sevei	d fly	ywheels.	
Fluctuation BALANCI	of Energy. Determination of size of fl NG: Static and dynamic balancing, 1	wheels. Balancing	gram g of	s an sevei	d fly	ywheels.	
Fluctuation BALANCI different pla Module 3	of Energy. Determination of size of fl NG: Static and dynamic balancing, 1	wheels. Balancing	gram g of nasse	s an sevei s.	d fly	ywheels. asses in	8
Fluctuation BALANCI different pla Module 3 Gyroscope	of Energy. Determination of size of fl NG: Static and dynamic balancing, l anes, Balancing of rotating and recipro	wheels. Balancing bocating n	gram g of nasses n, An	s an sever s.	d fly cal m	wheels. asses in	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration	of Energy. Determination of size of fl NG: Static and dynamic balancing, l anes, Balancing of rotating and recipro	wheels. Balancing ocating n roductio pic effec	gram g of nasses n, An	s an sever s.	d fly cal m	wheels. asses in	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili	of Energy. Determination of size of fl NG: Static and dynamic balancing, l anes, Balancing of rotating and recipro : Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco	wheels. Balancing ocating n roductio pic effec ehicle.	gram g of nasses n, An ct on a	s an sever s.	d fly cal m	wheels. asses in ocity and nd naval	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors	of Energy. Determination of size of fl NG: Static and dynamic balancing, l anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel y	wheels. Balancing ocating n roductio pic effec ehicle. Watt, F	gram g of nasses n, An ct on a	s an sever s. gula airpla	d fly cal m r velo ane a pell,	wheels. asses in ocity and nd naval Hartnel,	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung,	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel Introduction, types of governor ,	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a	gram g of nasses n, An ct on a Porter and	s an sever s. gula airpla , Pro Inert	d fly ral m r velo ane a bell, ia g	wheels. asses in ocity and nd naval Hartnel, overnor,	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung,	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel it Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a	gram g of nasses n, An ct on a Porter and	s an sever s. gula airpla , Pro Inert	d fly ral m r velo ane a bell, ia g	wheels. asses in ocity and nd naval Hartnel, overnor,	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung, M Controlling power of go Cam dyna	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel it Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a ernor, Is	gram g of nasses n, An ct on s Porter and f sochr	s an seven s. gula airpla , Pro	d fly ral m r velo ane a bell, ia g	wheels. asses in ocity and nd naval Hartnel, overnor,	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung, M Controlling power of go Cam dynam Module 4	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscopic and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel i Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov overnor. mics : analysis of cam and follower, jun	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a ernor, I np pheno	gram g of nasses n, An ct on s Porter and f sochr	s an seven s. gula airpla , Pro	d fly ral m r velo ane a bell, ia g	wheels. asses in ocity and nd naval Hartnel, overnor,	
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung, V Controlling power of go Cam dynai Module 4 Vibration:	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel ity of an automobile and a two-wheel i Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov overnor. mics : analysis of cam and follower, jun Vibrations of one degree of freedom s	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a ernor, I np pheno	gram g of nasses n, An ct on s Porter and f sochr	s an seven s. gula airpla , Pro	d fly ral m r velo ane a bell, ia g	wheels. asses in ocity and nd naval Hartnel, overnor,	8
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung, V Controlling power of go Cam dynai Module 4 Vibration: Free and Fo	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro control of gamma and gyroscopic effects: Inter- a, Gyroscopic torque (couple), Gyrosco aty of an automobile and a two-wheel w is Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov overnor. mics : analysis of cam and follower, jun Vibrations of one degree of freedom s orce vibrations;	vwheels. Balancing ocating n roductio pic effect ehicle. Watt, F ravity a ernor, Is np pheno ystems;	gram g of hasses n, An et on a corter and sochr	s an sever s. gula airpla , Pro Inert onisi	r velo ane a bell, ia g n, Ef	wheels. asses in ocity and nd naval Hartnel, overnor, fort and	
Fluctuation BALANCI different pla Module 3 Gyroscope acceleration ship, Stabili Governors Hartung, V Controlling power of go Cam dynam Module 4 Vibration: Free and Fo Transverse	of Energy. Determination of size of fl NG: Static and dynamic balancing, I anes, Balancing of rotating and recipro Gyroscope and gyroscopic effects: Int a, Gyroscopic torque (couple), Gyrosco ity of an automobile and a two-wheel ity of an automobile and a two-wheel i Introduction, types of governor , Wilson-Hartnel, Spring-controlled g force ,Stability, Sensitiveness of gov overnor. mics : analysis of cam and follower, jun Vibrations of one degree of freedom s	vwheels. Balancing ocating n roductio pic effec ehicle. Watt, F ravity a ernor, I np pheno ystems; e rotor s	gram g of nasses n, An ct on s Porter and sochr	s an seven s. gula airpla dinert: onisi on;	r velo ane a bell, ia g n, Ef	ywheels. asses in ocity and nd naval Hartnel, overnor, ffort and	

Module 5	
Introduction to Multi-degree of Freedom System :normal mode vibration, coordinate coupling, forced harmonic vibration, vibration absorber (tuned, and centrifugal pendulum absorber), vibration damper; Properties of vibrating system, flexibility matrix, stiffness matrix, reciprocity theorem, eigenvalues and eigenvectors, orthogonal properties of eigenvectors, modal matrix, Rayleigh damping, Normal mode summation.	8
Total	40

Course Code	Course name	L	Т	Р	С	Year	Semester
ME302	Sensors and actuators	3	0	0	3	3 rd	5 th
Course objectiv	/e:						
sensors. 2. Sensor a	ide theoretical and practical know applications in various fields. ide knowledge of the principles s.	C					
	Conten	nts					No. of
							Lectures
Module 1							
Basics of Moos	urement – Classification of err	ors F	rror (analy	cic	Static and dynamic	8
	f transducers – Performance meas			•		•	0
	on techniques – Sensor Output Sig			15-	Class		
Sensor canoratio	si teeninques - Sensor Output Sig	snar ryp	C 5.				
Module 2							
Motion, Proxi	mity And Ranging Sensors: M	lotion S	ensor	·s –	Poter	ntiometers, Resolver,	8
Encoders – Opti	cal, Magnetic, Inductive, Capacit	ive, LV	DT –	RVI	DT –	Synchro – Microsyn,	
Accelerometer –	GPS, Bluetooth, Range Sensors -	- RF bea	cons,	Ultra	asoni	c Ranging, Reflective	
beacons, Laser F	Range Sensor (LIDAR).						
Module 3							
Force, Magneti	c and Heading Sensors: Strain	Gage, L	oad (Cell,	Mag	netic Sensors -types,	9
principle, requir	ement and advantages: Magnete	o resisti	ve –	Hall	Eff	ect – Current sensor	
Heading Sensors	s - Compass, Gyroscope, Inclinor	neters.					
Orther D. Druger	no and Tampanatura Sanaana				11	nhata an liais. Dhata	

Optical, Pressure and Temperature Sensors: Photo conductive cell, photo voltaic, Photo resistive, LDR – Fibre optic sensors – Pressure – Diaphragm, Bellows, Piezoelectric – Tactile sensors, Temperature – IC, Thermistor, RTD, Thermocouple. Acoustic Sensors – flow and

level measurer	ment, Radiation Sensors - Smart Sensors - Film sensor, LASER sensors, Bio &	
Nano sensors		
Module 4		
Actuator: Hy	draulic systems: flow, pressure and direction control valves, actuators, and	9
supporting ele	ments, hydraulic power packs, pumps. Design of hydraulic circuits, Pneumatics:	
production, di	stribution and conditioning of compressed air, system components and graphic	
representation	s, design of systems	
Module 5		
SIGNAL CO	NDITIONING AND DAQ SYSTEMS: Amplification – Filtering – Sample and	8
Hold circuits	– Data Acquisition: Single channel and multi channel data acquisition – Data	
logging - ap	pplications - Automobile, Aerospace, Home appliances, Manufacturing,	
Environmenta	l monitoring	
	Total	42
Text	1. D. D. Patranabis, "Sensors and Transducers", PHI Learning Private Limit	ted.
	2. D.A.Hall, Sensors and Actuators, 1999 by CRC Press, 256 Pag 9781861250896.	ges, ISBN
Reference	1. W. Boltan, "Mechatronics: electronic control systems in mechanical and engineering", Longman, Singapore, 1999	l electrica

Course Code	Course name	L	Т	Р	С	Year	Semester
CS303	Artificial Intelligence	3	0	2	4	3 rd	5 th
Course Objectives The chiestive of the course is to respect on coursions of artificial intelligence (AI)							

Course Objective: The objective of the course is to present an overview of artificial intelligence (AI) principles and approaches. Develop a basic understanding of the building blocks of AI as presented in terms of intelligent agents: Search, Knowledge representation, inference, logic, and learning.

Торіс	Contents	No. of Lectures
Module 1	Fundamental issues in intelligent systems: History of artificial intelligence; philosophical questions; fundamental definitions; philosophical questions; modeling the world; the role of heuristics.	2
Module 2	Search and constraint satisfaction: Problem spaces; brute-force search; best-first search; two-player games; constraint satisfaction.	10
Module 3	Knowledge representation and reasoning: Review of propositional and predicate logic; resolution and theorem proving; non-monotonic inference; probabilistic reasoning; Bayes theorem.	8
Module 4	AI planning systems: Definition and examples of planning systems; planning as search; operator-based planning; propositional planning.	8
Module 5	Sequential decision making: Achieving behaviour by specifying rewards, Markov Decision Problems.	7

	35						
	Total						
Text Books	1. Stuart Russell and Peter Norvig: Artifical Intelligence: A Modern Approa	ch,					
	Pearson; Third edition (2013).						
	2. Elaine Rich, Kevin Knight and Shivashankar B Nair, Artificial Intelligence, T	Elaine Rich, Kevin Knight and Shivashankar B Nair, Artificial Intelligence, Tata					
	McGraw Hill, 3rd Edition 2009.						
Reference Books	1. N. J. Nilsson, "Principles of Artificial Intelligence", Narosa Publishing House, 1980.						
	2. Clocksin & Mellish, Programming in PROLOG, Narosa Publ. House.						

Course Code	Course name	L	Т	Р	С	Year	Semester	
EC304	IoT & Embedded Systems	3	0	0	3	3 rd	5 th	
Course objectiv	Course objective: This main objective of this course facilitates to design, describe, validate and optimise							
embedded electro	onic systems in different industrial ar	onlica	ation	areas	s Mo	ore particularly	the architecture of	

embedded electronic systems in different industrial application areas. More particularly, the architecture of advanced processors, their instruction sets, interfacings to develop different kinds of systems.

- 1. To provide in depth knowledge about embedded processor, its hardware and software.
- 2. To explain programming concepts and embedded programming in C and assembly language
- 3. To explain real-time operating systems, inter-task communication and an embedded software development tool.

Topic	Contents	No. of Lectures
Module-1	An introduction to Embedded system design & modelling with unified mark-up language; 8-bit and 16- bit, von Neumann and Harvard architectures, CISC and RISC architectures; Advanced RISC Machines, Open source core (LEOX), Introduction to microcontrollers, ARM versions, ARM instruction set: assembly language, Thumb instruction set, memory organization, data operations and flow control; Input/output mechanisms, isolated and memory mapped IO; interrupts and real time operations, ARM interrupts vectors, priorities and latency; co-processors; cache memory and memory management.	09
Module-2	Embedded Platforms: bus protocols, system bus configuration, USB and SPI buses, DMA, ARM bus; memory devices: memory device configuration, ROM, RAM, DRAM; I/O devices: timers, counters, ADC & DAC, keyboards, displays and touch screens. Processes: multiple tasks and multiple processes; process abstraction; context switching: cooperative multitasking, pre-emptive multitasking, process and object-oriented design	09
Module-3	Operating Systems: operating systems and RTOS; scheduling polices; inter-process communication; Networks: distributed embedded architectures: networks abstractions, hardware and software architectures; networks for embedded systems: I2C bus, CAN bus.	09
Module-4	An Introduction to Internet-of-Things, Sensing, Actuation, Basics of Networking; Communication Protocols, Sensor Networks, Machine- to-Machine Communications, Wireless medium access issues, MAC	07

	protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	
Module-5	Developing IoTs: Introduction to Python, Introduction to different IoT tools, Developing applications through IoT tools, Developing sensor based application through embedded system platform, Implementing IoT concepts with python; Domain specific applications of IoT: Home automation, Industry applications, Surveillance applications, Other IoT applications.	08
Total		42
Text	 A. N. Sloss, D. Symes, and C. Wright, <i>ARM system developer's guide: Designing and optimizing system software</i>; Elsevier, 1st edition. 2008. Pethuru Raj and Anupama C. Raman, <i>The Internet of Things: Enabling Technologies, Platforms, and Use Cases</i>, CRC Press, 2017. 	
Reference	 Arshdeep Bahga and Vijay Madisetti, Internet of Things: A Hands-on Approach, Universities Press, 2017. W. Wolf, Computers as components: Principles of embedded computing system design; Elsevier, 3rd edition, 2013. 	