INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus

Semester -VI

Course Code	Course Name	L	Т	Ρ	С	Year	Semester	Semester Total credit
ME303	Mechatronics and Automation	3	0	0	3			
ME32X	Elective-I	3	1	0	4			
ME33X	Elective-II	3	0	0	3			
ME306	Environmental Science and Green Technology	2	0	0	2			
CS307	Machine Learning	3	0	0	3	3	6	21
ME311	Mechatronics LAB	0	0	3	2]		
ME312	Sensors and Control LAB	0	0	3	2			
CS314	Machine Learning LAB	0	0	3	2]		
Society Aca	demia Industry Internship Seminar]		

Elective I

Semester	Area	Subject
VI	Mechatronics(Mechanical)	Industrial Engineering, CAD/CAM
VI	Computation	Computational Intelligence, FEM
VI	Mechatronics (Electrical)	Electric Hybrid vehicle/ Advance Electrical Machine Design

Elective-II

Semester	Area	Subject
VI	Mechatronics(Mechanical)	Micro-manufacturing,
		Introduction to Composite
		Materials
VI	Computation	Scientific Computation,
		Optimization methods in
		Engineering
VI	Mechatronics (Electrical)	MEMS and NEMS, Power
		Electronics

<u>Syllabus:</u>

Course Code	Course name	L	Т	Р	С	Year	Semester
ME303	Mechatronics and Automation	3	0	0	3	3 rd	6 th
•	ve: To introduce the need, evol with basic concepts and different auto						
	Contents						No. of Lectures
Module : 1							
process, Systen	design of mechatronics system: Was, Measurement systems, Contronple of mechatronic systems.					e	7
Module : 2							I
e e	nodelling: Mathematical models, Me m building blocks, Fluid system b			•		e ·	8
Module : 3							
Mechatronic system modelling: Engineering systems: Rotational – translational, electro-mechanical, pneumatic-mechanical, hydraulic-mechanical, micro electro mechanical system – Dynamic responses of system: first order, second order system – Performance measures.						8	
Module : 4							I
Programmable logic controller : Introduction — Principles of operation – PLC Architecture and specifications – PLC hardware components Analog & digital I/O modules, CPU & memory module – Programming devices – PLC ladder diagram, Converting simple relay ladder diagram into ladder diagram. PLC programming- Simple instructions – Manually operated switches – Mechanically operated switches - Latching relays.							8
Module : 5							
Applications of timers, Up /Dow instructions; Ap applications, Au	10						

Conveyor belt, A control application	Automatic car washing machine, Bottle label detection and process on.	
	Total	42
Text	 Gary Dunning, "Introduction to Programmable Logic Controllers" Cengage Learning, 2007 John Webb, "Programmable Logic Controllers: Principles and edition Prentice Hall of India, 2012. 	, , , ,
Reference	1. W. Bolton, "Mechatronics: electronic control systems in mechan engineering", Longman, Singapore, 1999	ical and electrical

Course Code	Course name	L	Т	Р	С	Year	Semester
ME306	Environmental Sciences & Green Technology	2	0	0	2	3 rd	6 th
	ve: To bring in the importance and	the	unde	rlyin	g pri	nciples of gre	en and sustainable
technology.							-
Торіс	Conte						No. of Lectures
Module-1	Introduction to Environmental Pollu Concept of an ecosystem, structure energy and nutrient flow, biogeoche and fate of environmental pollutants	05					
Module-2	Air pollution- Introduction, Segme atmosphere and their significance; Consequences and Preventive r Greenhouse effect and Global war Classification of air pollutants, photochemical and sulphurous, Ac Human health effects-Bhopal gas tr	05					
Module-3	Water Resource; Water Pollution Sources of Contamination, Polluta Water Quality: Portability limit – Water Quality Monitoring, Munici Rapid Sand Filter, Disinfection Disadvantages, Sterilization	05					
Module-4	Soil and Noise pollution: Litho contamination, sources of so environmental properties of soil con effects, Exposure & Risk Asses introduction to noise pollution, sour of noise pollution	05					
Module-5	Radioactive Pollution & Solid W pollutant: units of radiation and inst types of radioactive pollutants and radiations Radioactive waste and the	05					

	radiation from nuclear reactors (discuss Chernobyl and Fukushima) Solid waste management different types of solid waste, composting, biological methods of detoxification of hazardous waste Onsite handling and composting, integrated solid waste management,		
	Total	42	
Text1. Miller, T. G. Jr., Environmental Science, Wadsworth Publishing House, USA.2. Masters, G.M, Introduction to Environmental Engineering.			

Course Code	Course Name	L	Т	Р	С	Year	Semester
CS307	Machine Learning	3	0	0	3	3 rd	6 th
programmed	ctive: Machine learning is the science of get . Machine learning is so pervasive today that ving it. This course will help the students to pplications.	at yo	u pro	babl	y use	e it dozens of time	s a day
8	Conten	ts					Hours
Module 1	Introduction: History of machine learning		sic co	oncer	ots		3
Module 2	Supervised learning: Supervised learning setup, LMS, Logistic regression,						10
Module 3	Learning theory: Bias/variance trade-off, Union and Chernoff/Hoeffding bounds, VC dimension, Worst case (online) learning.					7	
Module 4	Unsupervised learning: Clustering K-means, EM. Mixture of Gaussians, Factor analysis, PCA (Principal components analysis), ICA (Independent components analysis).					8	
Module 5	Reinforcement learning and control: MDPs. Bellman equations, Value					7	
						Total	35
Text	1.Ethem Alpaydin, Introduction to Machin 2.Marsland, Stephen. Machine learning: a Hall/CRC, 2011.						
Reference	 Murphy, Kevin P. "Machine Learn Computation and Machine Learning series Brownlee, Jason. Machine Learnin Create Accurate Models and Work Project 	s)." (ng M	2018 Iaste	8), M ry W	IT P ith F	ress. Python: Understand	l Your Data,

Elective-I Course Syllabus

Course Code	Course name	L	Т	Р	С	Year	Semester
ME32X	Industrial Engineering	3	1	0	4	3 rd	6 th
Course objective	:	•					·

 informed judg an ability to collaborative An ability to engineering judg 	recognize ethical and professional responsibilities in engineering signents. function effectively on a team whose members together provide leand inclusive environment, establish goals, plan tasks, and meet objectivelop and conduct appropriate experimentation, analyze and inter- udgment to draw conclusions. acquire and apply new knowledge as needed, using appropriate learning	eadership, create a ctives. rpret data, and use
Торіс	Contents	No. of Lectures
Module : 1		
and value engin	oduction Planning and Control, Product design, Value analysis neering, Plant location and layout, Equipment selection, nning, Job, batch, and flowproduction methods,	10
Module : 2		
	v, Work study, Time and motion study, Incentive schemes, Work/job atory control, Manufacturing planning: MRP, MRP-II, JIT, CIM,	10
Module : 3		
-	Statistical process control, Acceptance sampling, Total quality guchi's Quality engineering. Forecasting, Scheduling and loading, Break-even analysis.	10
Module : 4		
	operations research, linear programming, Graphical method, , Dual problem, dual simplex method, Concept of unit worth of ity analysis,	10
Module : 5		
Transportation pr Queuing theory	oblems, Assignment problems, Network models: CPM and PERT,	8
	Total	48
Text	 S. L. Narasimhan, D. W. McLeavey, and P. J. Billington, Pro- and Inventory Control", PrenticeHall, 1997. J. L. Riggs, "Production Systems: Planning, Analysis and Contro 1981 	

Reference	1. Muhlemann, J. Oakland and K. Lockyer, "Productions and Operations
	Management", Macmillan, 1992.
	2. H. A. Taha, "Operations Research - An Introduction", Prentice Hall of India, 1997.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME32X	CAD-CAM	3	1	0	4	3 rd	6 th
2. To u	enderstand the concept of use of conderstand about the various type of eveloped the programming skills to	of curve	s and	l thei	r use	in produ	A
	Contents						No. of Lectures
Module 1							
aidedmanufacturi concepts ofgraph Transformations deformations.	and Projections: Definition,	neering Rigid I	(CA Body	E) sy Tra	ystem nsfor	ns, Basic mations,	8
modeling systems	ical user interface, Computer aide – wireframe, surface and solid m ly and web-based modeling system	odeling					
	ometry of Curves: Curve 1	nternol	ation	. Ci	urve	Fitting.	8
	ves, Differential Geometry of Cu	-		,			
	ves; Enguson's or Hermite Cub		ment	s, T	hree-	Tangent	
-	ntric Coordinates and Affine Tran	-				-	
	Curves, Rational Bézier Curves.					- '	
Module 3							1
Module 3Splines:Definition, Why Splines?, Polynomial Splines, B-Splines (Basis-Splines), Newton's Divided Difference Method, Recursion Relation to ComputeB-Spline Basis Functions, Properties of Normalized B-Spline Basis Functions, B-Spline Curves: Definition, Design Features with B-Spline Curves,Parameterization, Interpolation with B-Splines, Non-Uniform Rational B-Splines (NURBS).							8
	Interpolation with B-Splines, No)IIII F	Valio.	nai D	opines	

Curves on a Surf Fundamental Mat Gaussian and M Surfaces, Surface Two Surfaces. Design of Surfa Surfaces, Compo Rational B-spline Module 5 Introduction to op Conceptsfor man	ometry of Surfaces: Parametric Representation of Surfaces, ace, Deviation of the Surface from the Tangent Plane: Second rix, Classification of Points on a Surface, Curvature of a Surface: Iean Curvature, Developable and Ruled Surfaces, Parallel s of Revolution, Sweep Surfaces, Curve of Intersection between ces: Tensor Product Surface Patch, Boundary Interpolation site Surfaces, B-Spline Surface Patch, Closed B-Spline Surface, Patches (NURBS).	8
(Solid modeling s element analysis	software), CAM(manufacturing software), and CAE (Finite software).	
	Total	40
 Text 1. Anupam Saxena and Birendra Sahay, "Computer Aided Engineering Design", Springer, 2005. 2. Kunwoo Lee, "Principles of CAD/CAM/CAE systems", Addison Wesley, 1999. 		
Reference	 P. Radhakrishnan, S. Subramanyan, and V. Raju, "CAL edition, New Age, 2000. 	D/CAM/CIM", 2nd

Course Code	Course name	L	Т	Р	С	Year	Semester	
ME32X	Computational Intelligence	3	1	0	4	3 rd	6 th	
 Course objective: 1. It provides an introduction to the basic principles, techniques, and applications of neural network theory and fuzzy logic theory 2. Introduce students to artificial neural networks and fuzzy theory from an engineering perspective 								
Contents							No. of Lectures	
Module : 1								
Introduction to soft computing, hard computing, Need for soft computing; Neurons and neural networks;							8	
Module : 2								
Basic models of artificial neural networks –single-layer perceptron, multilayer perceptron; Radial basis function networks; SOM; Recurrent neural networks;							8	

Training of neu engineering	Training of neural network; Applications of neural networks in mechanical engineering					
Module : 3						
Introduction to fuzzy sets, Fuzzy reasoning and clustering; Optimization 8 tools –traditional and non-traditional, genetic algorithms, simulated annealing etc.;						
Module : 4						
Genetic Algorithms–FuzzyLogic, Genetic Algorithms–Neural Networks, Neural Networks–Fuzzy Logic. 8						
	Total	32				
Text	 D. K. Pratihar, "Soft Computing", Narosa Publishing House, 2008. S. Haykin, "Neural Networks: A Comprehensive Foundation", 2nd Ed, Pearson Education, 1999. 					
Reference	1 P. M. Divit II. S. Divit "Modeling of metal forming and machining processes: by					

Course	Course name	L	Т	Р	С	Year	Semester
Code							
ME32X	Finite Element Method3104 3^{rd} 6^{th}						6 th
that describe a computer code	Course objective: Finite Element Method (FEM) is a numerical technique for solving differential equations that describe many engineering problems. Main reason for its popularity is that the method results in computer codes which are versatile in nature that can solve many practical problems with minimum training. Obviously, there is danger in using commercially available computer software without proper						
understanding the theory behi	of the theory behind them, and that is one ind FEM.	e of t	he re	ason	s to h	ave a thorough unde	rstanding of
	Contents						No. of Lectures
Module 1							

Objective of	the Course, Basic Steps in FEM Formulation, General Applicability of the	8			
Method; Vari	ational Functional, Ritz Method, Variational FEM : Derivation of Elemental				
Equations, As	sembly, Imposition of Boundary Conditions, Solution of the Equations,				
Module 2	•				
1 -D Elemer	nts, Basis Functions and Shape Functions, Convergence Criteria, h and p	8			
Approximatio	ns, Natural Coordinates, Numerical Integration, Gauss Elimination based				
Solvers, Alternate Formulation: Weighted Residual Method, Galerkin Method;					
Problems with	n C1 Continuity: Beam Bending, Connectivity and Assembly of C1 Continuity				
Elements					
Module 3					
Natural Coord Assembly, Im	Inctional; 2-D Elements (Triangles and Quadrilaterals) and Shape Functions, linates, Numerical Integration, Elemental Equations, .Connectivity and position of Boundary Conditions, Axisymmetric (Heat Conduction) Problem, nd Plane Stress Solid Mechanics Problems.	8			
Module 4					
Sub-parametri	ic, Iso-parametric and Super-parametric Elements; Elements with C1 Continuity,	7			
Free Vibration	n Problems, Formulation of Eigen Value Problem, FEM Formulation,				
Module 5					
Time-depende	ent Problems, Combination of Galerkin FEM and FDM (Finite Difference	7			
Method), Cor	vergence and Stability of FD Scheme, Problems with Material Non-linearity,				
Direct Solutio	n Technique.				
	Total	38			
	· · · ·				
Text	1) U. S. Dixit, "Finite Element Methods For Engineers", Cengage Learning Asia	, 2009.			
	2) K. J. Bathe, "Finite Element Procedures", Prentice Hall, 1996.				
Reference	1) R. D. Cook, D. S. Malkus, M. E. Plesha and R.J. witt, "Conceptsand Applica	tions of			
	Finite Element Analysis", 4th Edition, Wiley-India,2007				

Course	Course name	L	Т	Р	С	Year	Semester
Code							
ME32X	Electric and Hybrid Vehicles	3	1	0	4	3 rd	6 th
Course ob	Course objective: Electric and hybrid electric vehicles (EVs and HEVs) are complex mechatronic						complex mechatronic
systems;the	ir design requires holistic considera	tion	of ve	hicle	and	tire dynamics, po	wertrain, electricmotors
and batterie	s, and control and estimation modul	es th	at are	e inte	grate	d through each of	her. The students would
be able to g	et an overview of system level mode	elling	g of E	Electr	ic an	d Hybrid Vehicles	8.
Contents							No. of Lectures
Module – I	Module – I						
Introduction to Vehicle Propulsion and Powertrain Technologies: History of							8
Vehicle De	velopment, Internal Combustion E	ngin	e Ve	hicle	es (IC	CEVs), Vehicles	

with Alter	rnative Fuels, Powertrain Technologies, Transmission Systems, Drivetrain	
and Diffe		
Electric	and Hybrid Powertrain Technologies: Introduction, Battery Electric	
	(BEVs), Fuel-Cell Electric Vehicles (FCEVs),	
Module -		
	Electric Vehicles, Plug-in Hybrid Electric Vehicles (PHEVs), Hybrid	8
•	c Vehicles (HHVs), Pneumatic Hybrid Vehicles (PHVs), Power/Energy	
•	nent Systems.	
	I Chassis Technologies and Design: Introduction, General Configuration	
-	nobiles, Body and Chassis Fundamentals, Different Types of Structural	
Systems,		
Module -	- III	
Body and	Chassis Materials, Specific Considerations in Body and Chassis Design	8
of Electri	ic and Hybrid Electric Vehicles, The Chassis Systems of Electric and	
Hybrid El	lectric Vehicles.	
Module -	- IV	
Vehicle	Dynamics Fundamentals: Concepts and Terminology, Vehicle	8
Kinematio	cs, Tire Mechanics and Modeling.	
Vehicle]	Dynamics Fundamentals: ICE Performance Characteristics, Electric	
Motor Per	rformance Characteristics,	
Module -	- V	
Battery P	erformance Characteristics, Transmission and Drivetrain Characteristics,	8
Regenerat	tive Braking Characteristics, Driving Cycles.	
Powertra	ins Components: Case Study: Introduction, Rechargeable Battery	
Vehicles,	Hybrid Vehicles, Fuel Cell Powered Bus	
	Total	40
Text	1) A. Khajepour, S. Fallah and A. Goodarji, "Electric and Hybrid Vehic	les, technologies,
	modeling and control: A mechatronic approach", Willey, 2014.	,
	2) J. Larminie and J. Lowry, "Electric vehicle technology explained", w	rilev.2003.
	2, 5. Eurinnie and 5. Eowry, Electric venicie termology explained, w	110y,2005.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME32×	Advance Electrical Machine Design	3	1	0	4	3 rd	6 th
Course objectiv	ve:The objective is to introduced basic desi	gn pr	incip	ole of	f desi	gn of electrical ma	chines. The
students would b	be able to understand various design consider	eratio	n in	desig	ning	of electrical machin	nes

Contents	No. of Lectures
Module 1	
Principles of Design, Factors for Consideration, Classification of Design Problem, Specifications and Standards, Constraints of Design, Dimensions and Rating of Machines, Output Equation (DC Machine, AC Machine), Materials for Electrical Machines, Heat Dissipation Modes, Types of Cooling (Ventilation), Types of Enclosure, Quantity of Coolant, Types of Duties and Ratings, Determination of Temperature Rise and Fall	7
Module 2	1
Analysis of Series Composite Magnetic Circuit, Analysis of Parallel Composite Magnetic Circuits, Comparison Between Magnetic Circuit and Electric Circuit, Determination of Reluctance and MMF of Air Gap, Determination of MMF of Teeth, Real Flux Density and Apparent Flux Density, Iron Loss Calculation(Hysteresis Loss, Eddy Current Loss, Total Iron or Core Loss, Pulsation Loss), Magnetic Leakage, Estimation of Specific Permeance and Leakage Reactance, Magnetic Pull	7
Module 3	1
Introduction (Based on Voltage Ratio, Based on Construction, Based on Application, Based on Number of Phases, Specifications of a Transformer, Design of Transformer(Output Equation of Single-phase Transformer, Output Equation of Single-phase Transformer (Core-type), Output Equation of Transformer, Volt Per Turn of Winding, Choice of Flux Density, Choice of Current Density, Design of Core (Square Core, Stepped Core), Design of Yoke, Overall Dimensions, Design of Windings, Resistance, Reactance Calculation, No Load Current of a Transformer, Transformer Losses, Effects of Change in Frequency in Parameters of the Transformer, Optimum Design, Mechanical Forces Module 4	7
	7
Introduction, Construction, Design Considerations, Specifications, Output Equation, Choice of Specific Loadings, Design of stator and Rotor, Magnetic Circuit Calculations, Calculation of Resistance and Leakage Reactance, Performance Calculation	
Module 5	
Elementary machines, Generated EMF, MMF of distributed ac winding, Rotating magnetic field, Torque in round rotor machine, Operation of basic machine types, Magnetic leakage in Rotating machines, Losses and Efficiency, Matching characteristics of electric machine and load, AC armature windings. Module 6	7
Design of three phase induction motor, thermal design (Losses, heat removal and thermal	7
equivalent circuit)	/
Total	42
Text 1) V. S. Nagarajan and V. Rajini, "Electrical Machine Design", Pearson Publishi	

	2) J. Pyrhonen, T. Jokinen and V. Hrabovcova, "Design of Rotating Electrical Machines",
	Wiely, 2009.
Reference	3) D. P. Kothari and I. J. Nagrath, "Electric Machines", McGrawHill, 2010.

Elective-II Course Syllabus

	Course name	L	Т	P	C	Year	Semester
ME33X	Micro-manufacturing	3	1	0	4	3 rd	6 th
Course objective:					1 1		
1. To introduce th	e different methods of micro-fabricat	tion.					
2. To study about	the different tools of micro-fabrication	on.					
	Contents						No. of Lectures
Module : 1							
	icro-manufacturing:definition, need/ nicro-manufacturing processes	/importai	nce,	appli	catio	ns, Size effect.	6
Module : 2							
Micro-machining processes: molecular dynamics at atomistic scale, diamond micro- machining and grinding, ultrasonic micro-machining, micro-EDM, laser beam micro- machining,							
machining and g							8
machining and g machining,							8
machining and g machining, Module : 3 Micro-ECM, electr micro-finishing t	rinding, ultrasonic micro-machinin	ng, mich ed ion- jues: la	ro-EI beam	DM,	laser	beam micro-	8
machining and g machining, Module : 3 Micro-ECM, electr micro-finishing t drawing and micro-	rinding, ultrasonic micro-machinin on beam micro-machining, focuse echniques. Micro-forming technic	ng, mich ed ion- jues: la	ro-EI beam	DM,	laser	beam micro-	
machining and g machining, Module : 3 Micro-ECM, electr micro-finishing t drawing and micro- Module : 4 Micro-fabrication	rinding, ultrasonic micro-machinin on beam micro-machining, focuse echniques. Micro-forming technic	ng, mich ed ion- jues: la: ng technic s epitaxi	beam ser n ques.	DM, n te nicro-	laser echnic -bend	beam micro- ues, Abrasive ing, micro-deep	
machining and g machining, Module : 3 Micro-ECM, electr micro-finishing t drawing and micro- Module : 4 Micro-fabrication deposition (CVD)	rinding, ultrasonic micro-machinin on beam micro-machining, focuse echniques. Micro-forming technic extrusion. Micro-welding and joinin using deposition techniques such a	ng, mich ed ion- jues: la: ng technic s epitaxi	beam ser n ques.	DM, n te nicro-	laser echnic -bend	beam micro- ues, Abrasive ing, micro-deep	8
machining and g machining, Module : 3 Micro-ECM, electr micro-finishing t drawing and micro- Module : 4 Micro-fabrication deposition (CVD) Module : 5 Sensors and actua	rinding, ultrasonic micro-machinin on beam micro-machining, focuse echniques. Micro-forming technic extrusion. Micro-welding and joinin using deposition techniques such a	ng, mich ed ion- lues: lan ng technio s epitaxi A) based	beam ser n ques. al, sj tech	DM, n te nicro- putter nique	laser echnic -bend ring, es.	beam micro- ues, Abrasive ing, micro-deep chemical vapor	8

Text	1. V.K. Jain, "Micromanufacturing Processes", Taylor and Francis, 2012.
	2. J. McGeough, "Micromachining of Engineering Materials", Marcel Dekker, 2002.
Reference	1. K. F. Ehmann, "Micromanufacturing: International Assessment of Research and Development", Springer, 2007.
	2. P. Raichoudhury, "Handbook of Microlithography, Micromachining and Microfabrication", 1997.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME33X	Introduction to Composite Materials	3	1	0	4	3 rd	6 th

Course objective:

- 1. Introduce to advanced composite materials and their applications.
- 2. Develop fundamental relationships for predicting the mechanical and hygrothermal response of multi layered materials and structures.
- 3. Develop macro-mechanical relationships for lamina and laminated materials.

Contents	No. of Lectures
Module : 1	
Classifications, terminologies, manufacturing processes (in brief).	6
Module : 2	
Macro-mechanicalanalysis of lamina, Hooke's law for anisotropic, monoclinic, orthotropic,transversely isotropic and isotropic materials, 2D Unidirectional and angle ply lamina, Strength theories of lamina. Micromechanical analysis of lamina	8
Module : 3	
Volume and mass fraction, density and void content –Evaluation of Elastic modulii, Ultimate strength of unidirectional lamina. Macro-mechanical analysis of laminates – Laminate code, Stress strain relations –In-plane and Flexural modulus,Hygrothermal effects. Failure Analysis and Design, Special cases of laminates, symmetric, cross ply, angle ply and antisymmetric laminates,	8
Module : 4	
Stress strain relations –In-plane and Flexural modulus, Hygrothermal effects. Failure Analysis and Design, Special cases of laminates, symmetric, cross ply, angle ply and antisymmetric laminates,	6

Module : 5				
	Ind failure modes.Establish the failure criteria for laminates based on dual lamina in a laminate.	8		
	Total	36		
Text	 R. M. Jones, Mechanics of Composite Materials, Scripta Book C B. D. Agarwal, and J. D. Broutman, "Analysis and Perform Composites", New York, John Willey and Sons, 1990 			
Reference	Reference1. K. Kaw Arthur, "Mechanics of Composite Materials", CRC Press, 1997.2. P, K. Mallik, "Fiber reinforced composites : materials, manufacturing and design", New York-Marcel and Dekker, 1993 (2 nd edition)			

Course Code	Course name	L	Т	P	С	Year	Semester
MAXXX	Scientific Computation	3 rd	6 th				
Course objective: Th	ne course provides an overview of the fo	ounda	ations	s of te	echni	ques needed to	solve a differential
equation in engineering	ng disciplines						
Торіс	Conte	nts					No. of Lectures
<u>Module-I</u>	Errors; Iterative methods for no interpolation, spline interpolations; interpolation, quadrature methods, G	Num	erica	1 inte	egrati	•	08
<u>Module-II</u>	Initial value problems for ordinary differential equations - Euler method, Runge-Kutta methods, multi-step methods, predictor- corrector method, stability and convergence analysis;					08	
Module-III	Finite difference schemes for partial differential equations - Explicit and implicit schemes					ons - Explicit	09
Module-IV	Consistency, stability and convergence; Stability analysis (matrix method and von Neumann method), Lax equivalence theorem					08	
Module-V	Finite difference schemes for initial and boundary value problems (FTCS, Backward Euler and Crank-Nicolson schemes, ADI methods, Lax Wendroff method, upwind scheme).					09	
						Total	42
Text	 D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd Ed., AMS, 2002. G. D. Smith, Numerical Solutions of Partial Differential Equations, 3rd Ed., Calrendorn Press, 1985. 						
References	 K. E. Atkinson, An Introduction to Numerical Analysis, Wiley, 1989. S. D. Conte and C. de Boor, Elementary Numerical Analysis - An Algorithmic Approach, McGraw-Hill, 1981. 						

Course Code	Course name	L	Т	Р	С	Year	Semester
ME33X	Optimization Methods in Engineering	3	1	0	4	3 rd	6 th
Course objectiv Optimization is	ve: the process of obtaining the best result u	nder g	iven	circu	ımsta	ances. In design	,construction and
maintenance of	any engineering system, engineers have to	o take	man	y tec	hnolo	ogical and mana	gerial decisions at
several stages.	The ultimate goal of all such decisions is ei	ther to	o mir	nimiz	e the	effort required	or to maximize
-	efit. The objective is to introduce number o					-	
types of optimiz	-	F					
	Contents						No. of Lectures
Module 1							
Introduction a	nd Basic Concepts: Historical Develop	ment;	Eng	ineer	ring	applications of	8
Optimization; A	Art of Modeling, Objective function; C	onstra	aints	and	Con	straint surface;	
Formulation of	design problems as mathematical program	mmin	g pro	oblen	ns, C	lassification of	
optimization pr	oblems, Optimization techniques -classical	and a	advar	nced	techn	niques.	
Module 2							1
-	sing Calculus: Stationary points; Functions		Ũ				8
	vexity and concavity of functions of one a						
	variable and multiple variables; Gradient			-			
	iple variables subject to equality constraints	-	-			-	
	nultiple variables subject to equality const	raints	; Hes	sian	matr	ix formulation;	
Eigen values, K	uhn-Tucker Conditions; Examples						
Module 3							-
LP problem; As variable optimiz and construction problems, Revi method; Sensiti	nming: .Standard form of linear programming ssumptions in LP Models; Elementary operation problem; Examples, Motivation of s in of simplex tableau; Simplex criterion; sed simplex method; Duality in LP; Privity or post optimality analysis, Other algo objective scaling method	eration imple Minin mal-d	ns, G x me nizat ual 1	raph thod on v elati	ical r , Sim versus ons;	nethod for two pplex algorithm s maximization Dual Simplex,	8
Module 4							1
	nming Applications: Use of software for s	olving	g line	ar op	timiz	zation problems	8
using graphical	and simplex methods, Examples for the	anspo	ortati	on, s	struct	ural and other	
optimization pro	oblems.						
Module 5							
Dynamic Prog	ramming:Sequential optimization; Repr	esenta	ation	of	multi	istage decision	8
process; Types of multistage decision problems; Concept of sub optimization and the principle							1

of optimality procedure in o					
•	variables; curse of dimensionality in DP				
	Total	38			
Text/ Reference	 S. S. Rao, "Engineering Optimization: Theory and Practice", New Age International P. Ltd.,New Delhi, 2000 H. A. Taha, "Operations Research: AnIntroduction", 5th Edition, Macmillan, New York,1992. 				
Reference	1) K. Deb, "Optimization for Engineering Design-Algorithms and Examples". India Pvt. Ltd., New Delhi, 1995	, Prentice-Hall of			

Course Cod	e	Course name	L	Т	Р	С	Year	Semester
ME33X	ME33X MEMS and NEMS $3 1 0 4 3^{rd}$					6 th		
Course objectiv	ve: This	course provides a rigorous groundin	ig in t	he th	eory	and p	practice of ME	MS design, as well
		nem to NEMS design. It will enable						
will also give yo	ou the a	nalytical tools to explore the possibil	lities	of N	EMS	•		
Topic		Contents	5					No. of Lectures
Module-1	 Overview and Introduction: New trends in Engineering and Science: Micro and Nano scale systems Introduction to Design of MEMS and NEMS, Overview of Nano and Micro electromechanical Systems, Applications of Micro and Nano electromechanical systems, Micro electromechanical systems, devices and structures Definitions, Materials for MEMS: Silicon, silicon compounds, polymers, metals 						09	
Module-2	MEM Photo depose techn Micro Aspeo	S Fabrication Technologies: Micr lithography, Ion Implantation, D itions: LPCVD, Sputtering, Evapo iques: Dry and wet etchin omachining: Bulk Micromachining, ct-Ratio (LIGA and LIGA-lil osystems packaging, Essential packa- ging materials	iffusi oratic ng, Surf ke)	on, E on, E elect ace l Tecl	Oxid Electr troch Micro hnolo	ation oplati emica omacl ogy;	. Thin film ing; Etching al etching; hining, High Packaging:	09
Module-3Micro Sensors: MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Micro sensors. Case study: Piezo-resistive pressure sensor					08			
Module-4	Actua crysta Comb Comb	Actuators: Design of Actuators: tion using shape memory Alloys ils, Actuation using Electrostatic for drive actuators), Micromechanical drive actuators	, Ac rces (Mote	tuatio (Para ors a	on u llel p nd pu	sing blate, umps.	piezoelectric Torsion bar, . Case study:	08
Module-5	Nano	-systems And Quantum Mechanics:	Aton	nc S	truct	ures a	and Quantum	08

Mechanics, Molecular and Nanostructure Dynamics: Schrödinger Equation

08

Module-5

	and Wave function Theory, Density Functional Theory, Nanostructures and Molecular Dynamics, Electromagnetic Fields and their quantization, Molecular Wires and Molecular Circuits	
	Total	42
Text	 Tai Ran Hsu, <i>MEMS and Microsystems Design and Manufacture</i>, Tata N S. E. Lyshevski, <i>MEMS and NEMS: Systems, Devices, and Structures</i>, O 	

Course Code	Course name	L	Т	Р	С	Year	Semester
ME33X	Power Electronics	3	1	0	4	3 rd	6 th
Course objectiv	ve:					·	
U	f this course is to present the principles of	•				A A	
-	ics circuits, power semiconductor devices				-	-	
analysis and de	sign techniques for switch-mode converter	rs usi	ng th	ie bi	ick,	boost, and buck	c-boost topologies.
	Contents						No. of Lectures
	Contents						No. of Lectures
Module 1							
Introduction: (Concept of Power Electronics, Different ty	pes o	of pov	wer e	electr	conics devices,	9
converter system	ns, areas of application, recent development	s					
Device charact	eristics, protection and operation: Termin	nal cl	harac	terist	ics c	of major power	
electronics devi	ices, ratings, protection, heating, cooling a	nd n	nount	ing,	serie	es and parallel	
operation, firing	g circuits						
Module 2							
Phase controlle	ed rectifiers: Principles of operation of phase	e cor	ntroll	ed, si	ngle	phase & poly-	9
phase, full-wave	e & half-wave converters with continuous ar	nd dis	conti	nuoi	is loa	ad currents and	
harmonic analy	sis. Effect of source impedance on the	perfo	rmar	ice c	of co	nverters, dual	
converters							
Module 3							
Choppers: Prin	ciple of chopper operation, Control strategi	ies, T	ypes	of c	hopp	er circuits and	8
steady state anal	lysis. Commutation in chopper circuits, Mul	ltipha	ise ch	oppe	er.		
Module 4							
Inverters: Class	sification of inverters, Single-phase and three	ee-ph	ase V	^v oltag	ge so	urce Inverters,	9
Methods of con	trolling output voltage, frequency and phase	se, Re	educt	ion o	of ha	rmonics in the	
inverter output v	voltage, Current source inverters and operation	ions.					
Module 5							
AC Voltage Co	ontroller: Types of AC voltage controllers,	Sing	gle pł	nase	volta	ge controllers,	10
Sequence contro	ol of ac voltage controllers, 3-phase AC volt	age c	contro	oller	opera	ation	
Cycloconverter	rs: Principles of cycloconverter operation	, Me	thod	s of	cont	rolling output	
voltage and free	quency in cases of: Single phase to single p	hase,	thre	e pha	ase to	o single phase,	
three phase to th	nree phase operation.						
						Total	45

Text/	1) E. Maksimovic, "Fundamentals of Power Electronics", 2001
Reference	2) N. Mohan, T. M. Undeland and W. P. Robbins, "Power Electronics: Converters, Applications and Design", Wiley, 1995.