INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHAGALPUR

Mechatronics Engineering (MEA)

B.Tech. Curricula and Syllabus

Semester -VII

Course Code	Course Name	L	Т	Ρ	С	Year	Semester	Semester Total Credit
HS401	Professional Ethics for Engineers	2	0	0	2			
ME402	Robotics	3	0	0	3			
ME42X	Elective – III	3	1	0	4			
XX4XX	Open Elective	3	1	0	4	Л	7	22
HS45X	Foreign Language	0	0	2	2	4	/	22
ME411	Robotics Lab	0	0	3	2			
ME491	Minor Project	0	0	0	4			
SAI-III	Society Academia Industry Internship-III	0	0	0	1			

Elective III

Semester	Area	Subject
VII	Mechatronics (Mechanical)	Mechanical Vibration,
		Computer Integrated
		Manufacturing
VII	Computation	Introduction to Data Science,
		Reinforcement Learning
VII	Mechatronics (Electrical)	Electro-mechanics and
		Magnetic Propulsion,
		Automobile Engineering

Open Elective

- 1. Quality Control.
- 2. Advanced Robotics.
- 3. Materials Characterizations Methods.
- 4. Physics of Manufacturing.

<u>Syllabus:</u>

Course Code	Course name	L	Т	Р	С	Year	Semester	
HS401	Professional Ethics in Engineers	2	0	0	2	4^{th}	7 th	
Course objectiv	and Human Values,							
to instil Moral and Social Values and Loyalty and to appreciate the rights of others.								
Topic	Conte	nts					No. of Lectures	
Module-I	HUMAN VALUES: Morals, Values and Ethics, Integrity, Work ethic, Service learning, Civic virtue, Respect for others, Living peacefully, Caring, Sharing, Honesty, Courage, Valuing time, Cooperation, Commitment, Empathy, Self-confidence, Character- Spirituality, Introduction to Yoga and meditation for professional excellence and Stress management.						05	
Module-II	ENGINEERING ETHICS: Senses of Engineering ethics, Variety of moral issues, types of inquiry- Moral dilemmas, Moral Autonomy, Kohlberg's theory, Gilligan's theory, Consensus and Controversy, Models of professional roles, Theories of right action, Self-interest, Customs and Religion, Uses of Ethical theories.						05	
Module-III	ENGINEERING AS SOCIAL EXP as Experimentation, Engineers as re- ethics, A Balanced Outlook on Law	ERII spons	MEN sible	TAT expe	ION rimei	: Engineering nters, Code of	04	
Module-IV	SAFETY, RERSPONSIBILITIES A Assessment of Safety and risk, Risk Risk, Respect for authority, Collect Conflict of interest, Occupationa Employee Rights, Intellectual Proper	05						
Module-V	GLOBAL ISSUES: Multinationa Ethics, Computer ethics, Weapon managers, Consulting engineers, En Advisors, Moral Leadership, Code Responsibility	05						
	24							
Text	I otal 24 1. Mike W Martin and Roland Schinzinger, <i>Ethics in Engineering</i> , Tata McGraw Hill, 2003. 2. Govindarajan M, Natarajan S, Senthil Kumar V S, <i>Engineering Ethics</i> , Prentice Hall of India 2004							

Course Code	Course name	L	Т	Р	С	Year	Semester
ME402	Robotics	3	0	0	3	4^{th}	7 th
Course objectiv	ve:						
1. To intro	duce the functional elements of Robo	tics.					
2. To impa	art knowledge on the direct and invers	se kir	lemat	ics.			
3. To intro	duce the manipulator differential mot	10n a	nd co	ontro	Ι.		
4. To edu	duce the dynamics and control of mai	ues.	otore				
<i>J.</i> 10 muo	duce the dynamics and control of ma	mpu	ators	•			
Contents						No. of Lectures	
Module 1							
Introduction	Mathematical Modeling of Robo	ots, 1	Robo	ts as	s M	echanical Devices,	9
	Common Kinematic Arrangements	of	Mani	pulat	ors,	Rigid Motions and	
	Homogeneous Transformations			•		0	
Module 2							
Kinematics	Kinematics Kinematic Chains, Forward Kinematics: The Denavit- Hartenberg,						9
Convention, Inverse Kinematics, Angular Velocity: The Fixed Axis Case,						e Fixed Axis Case,	
	Skew Symmetric Matrices, Angular	Vel	ocity	: The	Gen	eral Case, Addition	
	of Angular Velocities, Linear Velo	ocity	of a	Poin	t Att	ached to a Moving	
	Frame, Derivation of the Jacobian, S	Singu	ılariti	es			
Module 3							L
Dynamics of	The Euler-Lagrange Equations, Q	Gener	al E	xpre	ssion	s for Kinetic and	9
Robot	Potential Energy, Equations of Mo	otion	, Son	ne C	omm	on Configurations,	
Manipulators	Manipulators Properties of Robot Dynamic Equations, Newton-Euler Formulation						
Module 4							
Control of	PD control, Nonlinear Control, S	Stabil	ity, 1	Lyap	unov	's Direct Method,	12
Robot	Robot Adaptive Control						
Manipulator							
Module 5							
Path-	Configuration space, potential fields	S					5
Planning							
						Total	44

Course Code	Course name	L	Т	Р	С	Year	Semester
ME42X	Mechanical Vibrations	3	1	0	4	4^{th}	7 th
Course objective:							
1. To understand the one and multi-degree-of-freedom systems.							
2. To	2. To find the natural frequency and modes of vibration.						
3. To	3. To understand the use of vibration in practical problems and avoid the excessive vibration.						

Contents	No. of Lectures
Module 1	20000105
Introduction: Overview of the course, practical applications and research trends, Harmonic and periodic motions, vibration terminology Single-DOF Free Vibrations : Vibration model, Equation of motion-Natural Frequency, Energy method, Rayleigh method, Principle of virtual work, Damping models.	8
Module 2	
 Single-DOF Free Vibrations: Viscously damped free vibration, Special cases: oscillatory, non-oscillatory and critically damped motions. Logarithmic decrement, Experimental determination of damping coefficient. Single-DOF Forced Vibrations: Forced harmonic vibration, Magnification factor, Rotor unbalance, Transmissibility, Vibration Isolation, Equivalent viscous damping, Sharpness of resonance. 	8
Module 3	
 Two-DOF Free Vibrations: Generalized and Principal coordinates, derivation of equations of motion, Lagrange's equation, Coordinate coupling, Forced Harmonic vibration Vibration Absorber: Tuned absorber, determination of mass ratio, Tuned and damped absorber, unturned viscous damper. Multi-DOF: Derivation of equations of motion, influence coefficient method, Properties of vibrating systems: flexibility and stiffness matrices, reciprocity theorem, Modal analysis : undamped, Modal analysis: damped. 	10
Calculation of natural frequencies: Rayleigh method, Stodala method, Matrix iteration method, Holzer method and Dunkerley's method Torsional vibration: Simple systems with one or two rotor masses, Multi-DOF systems-transfer matrix method, Geared system, Branched system	8
Module 5	
Continuous systems : closed form solutions: Vibration of strings Longitudinal and	8
torsional vibration of rods, Transverse vibration of beams: equations of motion and boundary conditions, Transverse vibration of beams: natural frequencies and mode shapes Continuous systems : Approximate form solutions: Rayleigh's energy method, Rayleigh-Ritz method, Assumed modes and Galerkin's method	0
Total	42

Text	1. L. Meirovitch, "Elements of Vibration Analysis", McGraw Hill, Second edition,
	1986.
	2. S. S. Rao, "Mechanical Vibrations", 5 th Ed., Prentice Hall International, 2011.
Reference	1. L. Meirovitch, "Principles & Techniques of Vibrations", Prentice Hall International
	(PHIPE), New Jersey, 1997.
	2. W. T. Thomson, Theory of Vibration with Applications, CBS Publ., 1990.

Course Code	Course name	L	Т	Р	С	Year	Semester
ME42X	Computer Integrated Manufacturing	3	1	0	4	4 th	7 th

Course objective:

1. Students will employ engineering and scientific concepts in the solution of engineering design problems.

2. Students will develop problem-solving skills and apply their knowledge of research and design to create solutions to various challenges.

	-
Contents	No. of
	Lectures
Module : 1	
Introduction to CAD and CAM, Manufacturing Planning and control, CIM concepts, Computerised elements of CIM system, Types of manufacturing, Manufacturing models, Manufacturing Control	10
Module : 2	
Review of automation and control technologies. Material Handling technologies. Data Communication technologies. Automatic Data Acquisition technologies. Database Management technologies.	10
Module : 3	
Group Technology & Cellular Manufacturing Systems, Flexible Manufacturing Systems, Production flow Analysis, Transfer lines, Machine cell design and layout, Automated Assembly Systems. Quality Control Systems. Computer-Aided Process Planning. Concurrent Engineering. Production Planning and Control Systems.	10
Module : 4	

Levels of Automation, Lean and Agile Manufacturing.Web-based manufacturing.									
		Total	38						
Text	1. M. P. Groover, "Automation production systems, and computer-integrated								
		manufacturing", second edition, Prentice-Hall of India, New Delhi, 2001.							
	2.	P. Radhakrishnan, S. Subramanyan and V.Raju, "CAD/CAM/CIM", 2nd Edition, New							
		Age International (P) Ltd, New Delhi, 2000.							
Reference	1.	S. K. Vajpayee, "Principles of computer-integrated manufacturing", Prent	ice-Hall of						
mererenee		India, New Delhi, 2005							

Course	Course name	L	Т	Р	С	Year	Semester
Code							
ME42X	Introduction to Data Science	3	1	0	4	4^{th}	7 th
Course Objective: The goal of this course is to provide students with an introduction to the mathematical							
and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and							
analysis of large networks. The goal of this course to improve decision making power to the students							
through the analysis of data.							

Topic	Contents	No. of Lectures				
Module 1	Introduction to Data Science: Big Data and Data Science hype,	5				
	Datafication, Current landscape of perspectives- Skill sets					
	needed.					
Module 2	Statistical Inference, Exploratory Data Analysis and the Data	7				
	Science Process,					
Module 3	Three Basic Machine Learning Algorithms- Linear Regression,	10				
	K-Nearest Neighbors (k-NN), K-means. One More Machine					
	Learning Algorithm and Usage in Applications.					
Module 4	Feature Generation and Feature Selection (Extracting Meaning	10				
	From Data), Recommendation Systems: Building a User-Facing					
	Data Product,					
Module 5	Mining Social-Network Graphs, Data Visualization, Data	10				
	Science and Ethical Issues.					
		42				
	Total					
Text Books	1. Cathy O'Neil and Rachel Schutt. Doing Data Science	e, Straight Talk From				
	The Frontline.O'Reilly. 2014.					
	1. John D. Kelleher, Brendan Tierney, Data Science, MIT Press, 2018.					
Reference	1.Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining	of Massive Datasets,				
Books	Cambridge University Press, 2014.					
	2.Avrim Blum, John Hopcroft and Ravindran Kannan. Foundation	ns of Data Science,				
	Cambridge University Press, 2019.					

3.Mohammed J. Zaki and Wagner Miera Jr. Data Mining and Analysis: Fundamental
Conceptsand Algorithms, Cambridge University Press, 2014.
4. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques,
Morgan Kaufmann. 2011.

Course	Course name	L	Т	Р	С	Year	Semester	
Code								
ME42X	Reinforcement Learning	3	1	0	4	4 th	7 th	
Course Ob	jective: To introduce the students with	th b	asics	of	reint	forcement learnin	g	
reinforcemer	nt learning algorithms, dynamic programmi	ing a	nd its	s usa	ge in	RL and state of th	e	
art application	art applications in RL							
Topic	Conten	nts					No. of	
							Lectures	
Module 1	Introduction to Reinforcement Learnin	ng Pi	oble	m:			8	
	Reinforcement Learning, Elements of R	einfo	rcem	ent l	Learr	ing, Limitations		
	and Scope, An Extended Example: Tic-	Tac-	Гое,	Histo	ory o	f Reinforcement		
	Learning							
	Multi-arm Bandits: An n-Armed Band	it Pro	oblen	n, Ao	ction-	Value Methods,		
	Incremental Implementation, Tracking a	Non	static	onary	Prol	olem, Optimistic		
	Initial Values, Upper-Confidence-Bound	Acti	on Se	electi	on, C	bradient Bandits,		
Modulo 2	Associative Search (Contextual Bandits).							
Module 2	Goals and Rewards Returns Unified No.	o						
	Tasks The Markov Property Markov D	ecisi	n Pr	oces	ses V	Value Functions		
	Optimal Value Functions. Optimality and	l Apr	oroxi	natio	on.	, and i anotions,		
	Dynamic Programming: Policy Evalu	ation	, Pol	icy	Impr	ovement, Policy		
	Iteration, Value Iteration,			2	1	· · ·		
Module 3	Dynamic Programming: Asynchro	onou	s I	Dyna	mic	Programming,	8	
	Generalized Policy Iteration, Efficiency of	of Dy	nami	c Pro	ograr	nming.		
	Monte Carlo Methods: Monte Carlo Pre	edicti	on, N	Mont	e Cai	lo Estimation of		
	Action Values, Monte Carlo Control, Mo	nte C	arlo	Cont	rol w	ithout Exploring		
	Starts, Off-policy Prediction via In	nport	ance	Sa	mplir	ig, Incremental		
	Implementation, Off-Policy Monte Carlo	CO	ntrol,	Imp	ortar	ice Sampling on		
	Temporal-Difference Learning.) Dr	edict	ion	Δdv	antages of TD	0	
Moune 4	Prediction Methods Optimality of TD(0) Sa	rea. (IOII, In_P	olicy	TD Control O	,	
	Learning: Off-Policy TD Control. Games), Du '	15 u . (J II I	oney	TD Control, Q		
	Policy Approximation: Actor–Critic Methods, Eligibility Traces for Actor–							
	Critic Methods, R-Learning and the Average-Reward Setting.							
Module 5	Policy Approximation: Vanilla policy	gradi	ent n	netho	od, R	EINFORCE and	8	
	TROP algorithms.							
	State of the art applications of RL: Latest practical application of RL:							
	Atari, Go, robotic applications and NLP.							
						Total	41	

Text	1.RS Sutton Reinforcement Learning: An Introduction – Stanford University									
Books 2.Hands-On Reinforcement Learning with Python: Master Reinforcement an										
	Reinforcement Learning Using OpenAI Gym and TensorFlow.									
Reference	ence 1. Richard S. Sutton and Andrew G. BartoReinforcement Learning: An Introduction									
Books	(Introduction (Adaptive Computation and Machine Learning series) Kindle Edition.									

Course	Course name	L	Т	Р	C	Year	Semester		
Code									
ME401	Electro mechanics and magnetic	3	1	0	4	4 th	7 th		
	propulsion								
Course obje	ctive:								
The obje	The objective of the course is to provide fundamental knowledge in electro mechanics.								
	Contents						No. of Lectures		
Module : 1									
Introduction to electromagnetics: Maxwell's Equations, Magnetic Circuits and Induction, Principles of electromechanical energy conversion;							6		
Module : 2	Module : 2								
Introduction	to Rotating Machines: Types of electr	ical r	nachi	ines,	gen form	eralized theory	8		
	machines, Reference frame theory,	space				ulation,			
Module : 3									
Unbalanced	Magnetic Pull: definition, cause, effect	and	ren	nedie	s, di	fferent winding	8		
scheme to ree	duce unbalanced magnetic pull; Magnetic	Bear	ings:	intro ente s	ducti	on, principles of			
amplifiers, se	ensors, actuators, controllers.	c con	ipon		winei	i includes power			
Module : 4									
Self-bearing machine: Basic principles, different methods of producing controllable force, introduction to self-bearing machine and control techniques.							6		
Module : 5									
Solution of L Coupled ro Coupled dyr bearings; Sys	8								

		Total 36
Text	1.	S. J. Chapman, "Electric Machinery Fundamentals", McGraw Hills, Fifth Edition, 2011.
	2.	Gerhard Schweitzer and Eric Maslen, "Magnetic Bearings: Theory, Design and Application to Rotating Machinery", Springer, 2009.
Reference	1.	Juha Pyrhonen, Tapani Jokinen and Valeria Hrabovcova, "Design of Rotating Electrical Machines", Wiley, 2nd Edition, October 2013.
	2.	A. Chiba, T. Fukao, M. Oshima, M. Takemoto and D. Dorrell, "Magnetic Bearings and Bearingless Drives" Elsevier 2005

Course Code	Course name	T	т	D	C	Voor	Somostor
ME401		2	1	I O		1 ear	7th
ME401	FNGINFERING	3	1	0	4	4	/
Course objective:							
1 To understa							
2. To understa	nd the power generation system in a	utom	obile).	•		
3. To understa	nd the automobile structure and susp	oensi	on sy	stem			
4. To understa	nd the emissions and pollution contr	ol on	auto	mob	ile.		
	7						
	Contents						No. of
Madula 1							Lectures
Wiodule 1							
Introduction: Introduct	ion, Basic concepts of Automobile H	Engin	eerin	ig an	d gen	eral configuration of	7
an automobile, Power ar	nd Torque characteristics. Rolling, ai	r and	grad	ient 1	resist	ance. Tractive effort.	
Gear Box Gear ratio de	termination		U				
Transmission System.	Paquiramenta Clutchea Torque a	onuo	rtora	Our	or D	rive and free wheel	
Transmission System:	Requirements. Clutches. Torque C	onve	TIETS	. 0%		live and liee wheel,	
Universal joint.							
Module 2							
Differential Gear Mecha	anism of Rear Axle. Automatic trans	missi	on, S	Steeri	ng ai	nd Front Axle.	7
Castor Angle, wheel camber & Toe-in, Toe-out etc Steering geometry. Ackerman mechanism,							
Under steer and Over steer.							
Braking system: General requirements, Road, tyre adhesion, weight transfer, Braking ratio.							
Mechanical brakes, Hyd							
Chasis and Suspension							
rear suspension, Perpen	dicular arm type, Parallel arm type,	Dead	l axle	e susj	pensi	on system, Live axis	
suspension system, Air	suspension & shock absorbers.						

Module 3							
Electrical System: Type	Electrical System: Types of starting motors, generator & regulators, lighting system, Ignition system, 7						
Horn, Battery etc.	Horn, Battery etc.						
Fuel Supply System: D	Fuel Supply System: Diesel & Petrol vehicle system such as Fuel Injection Pump, Injector & Fuel						
Pump, Carburetor etc. M	PFI.						
Module 4							
Emission standards and	d pollution control :	7					
Indian standards for auto	motive vehicles-Bharat I and II, Euro-I and Euro-II norms, fuel quality						
standards, environmental	standards, environmental management systems for automotive vehicles, catalytic converters, fuel						
additives and modern tre	additives and modern trends in automotive engine efficiency and emission control.						
Maintenance system:	Maintenance system:						
Preventive maintenance,	break down maintenance and over hauling.						
	Total	28					
Text/ Reference	 Kripal Singh, "Automobile Engineering, Vol.1 & Vol.2.", Standa distributer 	rd publisher and					
	 K. K. Jain and R. B. Asthana, "Automobile Engineering", 1st Ed., Tata Mcgraw Hill 2017. 						

Open electives

Course Code	Course name	T.	Т	Р	С	Vear	Semester
XXXXX	Quality Control	3	1	0			7th
Course objective:	<mark>/</mark>						
1 To understay	ranization						
1. To understan	In the philosophy and basic concept	S OI (quant	уш	iprov	ement in industry of o	rgamzation.
2. To understan	nd the quality control in specified in	nit.					
3. To understan	id the principle of acceptance of sar	nple.	1				
4. To understar	nd the defect diagnosis process of th	e sar	nples				
	Contents						No. of Lectures
Module 1							
							_
Introduction: Introduction	ion, Concept and evaluation of qual	ity c	ontro	l. M	easur	ement & Metrology,	8
precision vs accuracy. Pr	cocess capability, standardization&	Intere	chang	ge ab	ility.		
Inspection and Gauges	: Inspection methods. Types of Ga	uges	. Lim	its F	Fits a	nd Tolerances. Non-	
Destructive Testing& Ev	valuation.						
M. J1. 0							
Module 2							
Control charts for SQC	C: Statistical Quality Control (SQC)	. Co	ntrol	char	ts for	variables suchas X,	8
R charts and control charts for attributes such as p-chart, c-chart. Construction & use of the control							
charts, Process capability.							
Acceptance Sampling f	or SQC: Introduction, Principle of	acce	ptanc	e sa	mplir	g. Producer's and	
consumer's risk. Samplin	ng plans - single, double & sequenti	al. Sa	ampli	ng b	y attı	ibutes and variables	

Module 3					
Reliability: Introduction to reliability, bath-tub curve. Life expectancy. Reliability based design.	8				
Series & Parallel System.					
Defect Diagnosis and prevention: Basic causes of failure, curve/control of failure.					
MTBF. Maintainability, Condition monitoring and diagnostic techniques.					
Module 4					
Value Engineering: Elements of value analysis, Techniques	8				
TQM: Basic Concept, Quality control, Quality Assurance and Quality Management and Total Quality Management. Implementation of TQM. ISO 9000 and its series, Zero defect Taguchi method, Six Sigma concepts.					
Module 5					
Other Factors in Quality : Human Factors such as attitude and errors. Material-Quality, Qualitycircles, Quality in sales & service.	8				
Total	40				
Text 1. D. C. Montgomery, "Introduction to Statistical Quality Control", 6th E Sons, Inc, 2009.	d., John Wiley &				
2. I. Kaoru, "Introduction to Quality Control", springer, 1989					

Course Code	Course name	L	Т	Р	С	Vear	Semester
XXXXX	Advanced Robotics	3	1	0	4	<u>Ath</u>	7 th
Course objective	Auvanceu Robotics	5	1	0		т	<mark>/</mark>
1 To understa	nd the philosophy and basic concept	e of	məli	w ir	nnrou	ement in industry or	organization
2 To understan	nd the quality control in specified li	nit	quam	ly II	nprov	chieft in hiddstry of v	
2. To understan	nd the principle of acceptance of set	mnla					
5. To understan	ind the principle of acceptance of sai	npie.					
4. To understan	nd the defect diagnosis process of th	le sai	npies	•			
	Contanta						No. of Loodeneer
	Contents						No. of Lectures
Module 1							
CONTROL SYSTEM	IS AND COMPONENTS: Ba	sic	Cont	rol	Syst	ems Concepts and	8
Models,Controllers, Cor	ntrol System Analysis, Robot Activ	ation	and	Fee	dback	Components,Power	
Transmission Systems, F	Robot Joint Control Design.						
ROBOT END EFFEC	TORS: Types, Mechanical Gripp	ers	and	Oth	er ty	pes, Tools as End	
Effectors, The Robot/E	nd Effector Interface, Consideration	ns in	Grip	per	Selec	tion and Design	
Module 2							
							0
MACHINE VISION: Introduction, The Sensing and Digitizing function, Image processing and							8
Analysis, Trainig and Vision Systems, Robotic Applications.							

Module 3
ROBOT PROGRAMMING: Programming methods, Robot program as a path in 8
space, Motion Interpolation, WAIT, SGNAL, DELAY Commands, Branching
Module 4
ROBOT LANGUAGES : The Textual Robot languages, Generations of Robot programming10
languages, Robot language Structures, Constants, Variables, and other data Objects, Motion
Commands, program Control and Subroutines
Module 5
violuit 5
ROBOT APPLICATIONS IN MANUFCATURING: Material Transfer And Machine8
Loading / Unloading, An Approach for Implementing Robotics
FUTURE APPLICATIONS: Characteristics of Future Robot Tasks, Future manufacturing
Applications, Hazardous and Inaccessible Nonmanufacturing Environments
Total 42
Text 1. Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey Industrial Robotics
Technology, Programming, and Applications , 1stedition, McGraw-Hill International Edition, 1986
2. K.S.Fu, R.C Gonzalez, C.S.G.Lee, ROBOTICS, Control, Sensing, Vision and Intelligence, 1stedition
McGraw-Hill International Edition, 1987

	0	т	m	D	C	X 7	S (
Course Code	Course name	L	T.	P	C	Year	Semester			
XXXXX	Material Characterization	3	1	0	4	4^{th}	7 th			
Course objective:										
·										
1. Introduce basic tech	1. Introduce basic techniques for materials characterization.									
2. Introduce the working	ng principles and instrumentation of	mair	n tech	nniqu	les.					
3. Introduce the interpr	retation of the characterization techn	ique	outp	uts.						
			1							
4. Observe operations	of characterization equipment.									
Topics	Contents						No. of Lectures			
Module : 1										
							10			
Elements of Crystallog	raphy, Principles of X-ray diffrac	ction,	X-r	ay e	quipn	nent and				
data analysis; associated	data analysis; associated techniques in X-ray spectroscopy, Fundamentals of elemental									
analysis	analycic									
unury 515.										
Module : 2	Module : 2									

Optical/Electron Micr optical and electron n grain size determinatio	10					
Module : 3						
Electron diffraction, SE analysis. Neutron Sca reflectometry.	10					
Module : 4						
Thermal Analysis: Princ TMA, DMA, etc.	8					
Module : 5						
Mechanical Property c related to Tensile, com Deformation; Superplast	10					
	Total	48				
lext	 "Materials characterization", Vol. 10, ASM hand book, 1997. B. D. Cullitey, "Elements of X-ray diffraction", Addison-Wesely, 1968. 					
Reference	1. ASTM handbook, vol. 3, 1997.					
	2. R. F. Speyer, "Thermal Analysis of Materials", Marcel Decker, 1994					

Course	Course name	L	Т	Ρ	С	Year	Semester
Code							
XXXXX	Physics of Manufacturing Processes	3	1	0	4	4 th	7 th
Course objective:							
1. This course gives an introduction to production methods and manufacturing technologies used in							
engineering.							
2. The focus is given on the understanding of physical phenomena underlying the processes, the relation							
between materials/manufacturing processes.							
Topics	Contents						No. of Lectures
Module : 1							

Stress and strain behavior of materials, plastic and tangent modulus, work hardening, plastic instability in tensile test, empirical stress-strain equations, effect of pressure, strain-rate and temperature.				
Module : 2				
Analysis of stress tensor, eigenvalues, decomposition into deviatoric and hydrostatic components, octahedral stresses, analysis of strain and strain rates, stress equilibrium and virtual work, objective stress rates.				
Module : 3				
Plasticity: the criteria of yielding, isotropic and anisotropic hardening, rules of plastic flow, Levy- Mises and PrandtlReussequations, anisotropic flow rule, Hill's 1948 and 1979 yield criteria for anisotropic yielding.				
Module : 4				
Upper bound theorem and its application in deformation processes like rolling, wire drawing, extrusion, forging. Lower bound theorem with a few applications. Slab method and its application in deformation process like symmetric/asymmetric rolling, forging, wire drawing and extrusion.				
Module : 5				
Elastoplastic sheet bending. Analysis of autofrettage. Theory of slip line field and its application in metal forming. Heat transfer analysis deformation processes with examples from rolling and friction stir welding/processing. Workability and dynamic materials model.				
	Total	40		
Text	 J. Chakrabarty, "Theory of plasticity", Elsevier Butterworth-Heinemann Company, Singapore, 2006. B. L. Juneja, "Fundamentals of metal forming processes", New Age International, New Delhi, 2007. 			
Reference	1. P. M. Dixit and U. S. Dixit, "Modelling of Metal Forming and Machining Processes: By			
	Finite Element and Soft Computing Methods", Springer, London, 2008.			
	2. W. F. Hosford and R. M. Caddell, "Metal forming: mechanics and metallurgy", Cambridge			
	University Press, London, 2011.			